Blame view
src/transform/regression-tree.cc
15 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
// transform/regression-tree.cc // Copyright 2009-2011 Saarland University // Author: Arnab Ghoshal // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <string> #include <utility> using std::pair; #include <vector> using std::vector; #include "transform/regression-tree.h" #include "tree/clusterable-classes.h" #include "util/common-utils.h" namespace kaldi { /// Top-down clustering of the Gaussians in a model based on their means. void RegressionTree::BuildTree(const Vector<BaseFloat> &state_occs, const std::vector<int32> &sil_indices, const AmDiagGmm &am, int32 max_clusters) { KALDI_ASSERT(IsSortedAndUniq(sil_indices)); int32 dim = am.Dim(), num_pdfs = static_cast<int32>(am.NumPdfs()); vector<Clusterable*> gauss_means; // For each Gaussianin the model, the pair of (pdf, gaussian) indices. vector< pair<int32, int32> > gauss_indices; Vector<BaseFloat> tmp_mean(dim); Vector<BaseFloat> tmp_var(dim); BaseFloat var_floor = 0.01; gauss2bclass_.resize(num_pdfs); gauss_means.reserve(am.NumGauss()); // NOT resize, uses push_back gauss_indices.reserve(am.NumGauss()); // NOT resize, uses push_back for (int32 pdf_index = 0; pdf_index < num_pdfs; pdf_index++) { gauss2bclass_[pdf_index].resize(am.GetPdf(pdf_index).NumGauss()); for (int32 num_gauss = am.GetPdf(pdf_index).NumGauss(), gauss_index = 0; gauss_index < num_gauss; ++gauss_index) { // don't include silence while clustering... if (std::binary_search(sil_indices.begin(), sil_indices.end(), pdf_index)) continue; am.GetGaussianMean(pdf_index, gauss_index, &tmp_mean); am.GetGaussianVariance(pdf_index, gauss_index, &tmp_var); tmp_var.AddVec2(1.0, tmp_mean); // make it x^2 stats. BaseFloat this_weight = state_occs(pdf_index) * (am.GetPdf(pdf_index).weights())(gauss_index); tmp_mean.Scale(this_weight); tmp_var.Scale(this_weight); gauss_indices.push_back(std::make_pair(pdf_index, gauss_index)); gauss_means.push_back(new GaussClusterable(tmp_mean, tmp_var, var_floor, this_weight)); } } vector<int32> leaves; vector<int32> clust_parents; int32 num_leaves; TreeClusterOptions opts; // Use default options or get from somewhere else TreeCluster(gauss_means, (sil_indices.empty() ? max_clusters : max_clusters-1), NULL /* clusters not needed */, &leaves, &clust_parents, &num_leaves, opts); if (sil_indices.empty()) { // no special treatment of silence... num_baseclasses_ = static_cast<int32>(num_leaves); baseclasses_.resize(num_leaves); parents_.resize(clust_parents.size()); for (int32 i = 0, num_nodes = clust_parents.size(); i < num_nodes; i++) { parents_[i] = static_cast<int32>(clust_parents[i]); } num_nodes_ = static_cast<int32>(clust_parents.size()); for (int32 i = 0; i < static_cast<int32>(gauss_indices.size()); i++) { baseclasses_[leaves[i]].push_back(gauss_indices[i]); gauss2bclass_[gauss_indices[i].first][gauss_indices[i].second] = leaves[i]; } } else { // separate top-level split between silence and speech... // silence is node zero and new parent is last-numbered one. num_baseclasses_ = static_cast<int32>(num_leaves+1); // +1 to include 0 == silence baseclasses_.resize(num_leaves+1); // +1 to include 0 == silence parents_.resize(clust_parents.size()+2); // +1 to include 0 == silence, +parent. int32 top_node = clust_parents.size() + 1; for (int32 i = 0; i < static_cast<int32>(clust_parents.size()); i++) { parents_[i+1] = clust_parents[i]+1; // handle offsets } parents_[0] = top_node; parents_[clust_parents.size()] = top_node; // old top node's parent is new top node. parents_[top_node] = top_node; // being own parent is sign of being top node. num_nodes_ = static_cast<int32>(clust_parents.size() + 2); // Assign nonsilence Gaussians to their assigned classes (add one // to all leaf indices, make room for silence class). for (int32 i = 0; i < static_cast<int32>(gauss_indices.size()); i++) { baseclasses_[leaves[i]+1].push_back(gauss_indices[i]); gauss2bclass_[gauss_indices[i].first][gauss_indices[i].second] = leaves[i]+1; } // Assign silence Gaussians to zero'th baseclass. for (int32 i = 0; i < static_cast<int32>(sil_indices.size()); i++) { int32 pdf_index = sil_indices[i]; for (int32 j = 0; j < am.GetPdf(pdf_index).NumGauss(); j++) { baseclasses_[0].push_back(std::make_pair(pdf_index, j)); gauss2bclass_[pdf_index][j] = 0; } } } DeletePointers(&gauss_means); } static bool GetActiveParents(int32 node, const vector<int32> &parents, const vector<bool> &is_active, vector<int32> *active_parents_out) { KALDI_ASSERT(parents.size() == is_active.size()); KALDI_ASSERT(static_cast<size_t>(node) < parents.size()); active_parents_out->clear(); if (node == static_cast<int32> (parents.size() - 1)) { // root node if (is_active[node]) { active_parents_out->push_back(node); return true; } else { return false; } } bool ret_val = false; while (node < static_cast<int32> (parents.size() - 1)) { // exclude the root node = parents[node]; if (is_active[node]) { active_parents_out->push_back(node); ret_val = true; } } return ret_val; // will return if not starting from root } /// Parses the regression tree and finds the nodes whose occupancies (read /// from stats_in) are greater than min_count. The regclass_out vector has /// size equal to number of baseclasses, and contains the regression class /// index for each baseclass. The stats_out vector has size equal to number /// of regression classes. Return value is true if at least one regression /// class passed the count cutoff, false otherwise. bool RegressionTree::GatherStats(const vector<AffineXformStats*> &stats_in, double min_count, vector<int32> *regclasses_out, vector<AffineXformStats*> *stats_out) const { KALDI_ASSERT(static_cast<int32>(stats_in.size()) == num_baseclasses_); if (static_cast<int32>(regclasses_out->size()) != num_baseclasses_) regclasses_out->resize(static_cast<size_t>(num_baseclasses_), -1); if (num_baseclasses_ == 1) // Only root node in tree KALDI_ASSERT(num_nodes_ == 1); double total_occ = 0.0; int32 num_regclasses = 0; vector<double> node_occupancies(num_nodes_, 0.0); vector<bool> generate_xform(num_nodes_, false); vector<int32> regclasses(num_nodes_, -1); // Go through the leaves (baseclasses) and find where to generate transforms for (int32 bclass = 0; bclass < num_baseclasses_; bclass++) { total_occ += stats_in[bclass]->beta_; node_occupancies[bclass] = stats_in[bclass]->beta_; if (num_baseclasses_ != 1) { // Don't count twice if tree only has root. node_occupancies[parents_[bclass]] += node_occupancies[bclass]; } if (node_occupancies[bclass] < min_count) { // Not enough count, so pass the responsibility to the parent. generate_xform[bclass] = false; generate_xform[parents_[bclass]] = true; } else { // generate at the leaf level. generate_xform[bclass] = true; regclasses[bclass] = num_regclasses++; } } // Check whether there is enough data for the single global transform (at // the root of the regression tree). If not, no transforms will be computed. if (total_occ < min_count) { // Make all baseclasses use the unit transform at the root. for (int32 bclass = 0; bclass < num_baseclasses_; bclass++) { (*regclasses_out)[bclass] = 0; } DeletePointers(stats_out); stats_out->clear(); KALDI_WARN << "Not enough data to compute global transform. Occupancy at " << "root = " << total_occ << "<" << min_count; return false; } // Now go through the non-leaf nodes and find where to generate transforms. // Iterates only till num_nodes_ - 1 so that it doesn't count root twice. for (int32 node = num_baseclasses_; node < num_nodes_ - 1; node++) { node_occupancies[parents_[node]] += node_occupancies[node]; // Only bother with generating transforms if a child asked for it. if (generate_xform[node]) { if (node_occupancies[node] < min_count) { // Not enough count, so pass the responsibility to the parent. generate_xform[node] = false; generate_xform[parents_[node]] = true; } else { // transform will be generated at this level. regclasses[node] = num_regclasses++; } } } AssertEqual(node_occupancies[num_nodes_-1], total_occ, 1.0e-9); // If needed, generate a transform at the root. if (generate_xform[num_nodes_-1] && regclasses[num_nodes_-1] < 0) { KALDI_ASSERT(node_occupancies[num_nodes_-1] >= min_count); regclasses[num_nodes_-1] = num_regclasses++; } // Initialize the accumulators for output stats. // NOTE: memory is allocated here; be careful to delete the pointers stats_out->resize(num_regclasses); for (int32 r = 0; r < num_regclasses; r++) { (*stats_out)[r] = new AffineXformStats(); (*stats_out)[r]->Init(stats_in[0]->dim_, stats_in[0]->G_.size()); } // Finally go through the tree again and add stats vector<int32> active_parents; for (int32 bclass = 0; bclass < num_baseclasses_; bclass++) { if (generate_xform[bclass]) { KALDI_ASSERT(regclasses[bclass] > -1); (*stats_out)[regclasses[bclass]]->CopyStats(*(stats_in[bclass])); (*regclasses_out)[bclass] = regclasses[bclass]; if (GetActiveParents(bclass, parents_, generate_xform, &active_parents)) { // Some other baseclass has less count for (vector<int32>::const_iterator p = active_parents.begin(), endp = active_parents.end(); p != endp; ++p) { KALDI_ASSERT(regclasses[*p] > -1); (*stats_out)[regclasses[*p]]->Add(*(stats_in[bclass])); } } } else { bool found = GetActiveParents(bclass, parents_, generate_xform, &active_parents); KALDI_ASSERT(found); // must have active parents for (vector<int32>::const_iterator p = active_parents.begin(), endp = active_parents.end(); p != endp; ++p) { KALDI_ASSERT(regclasses[*p] > -1); (*stats_out)[regclasses[*p]]->Add(*(stats_in[bclass])); } (*regclasses_out)[bclass] = regclasses[active_parents[0]]; } } KALDI_ASSERT(num_regclasses <= num_baseclasses_); return true; } void RegressionTree::Write(std::ostream &out, bool binary) const { WriteToken(out, binary, "<REGTREE>"); WriteToken(out, binary, "<NUMNODES>"); WriteBasicType(out, binary, num_nodes_); if (!binary) out << ' '; WriteToken(out, binary, "<PARENTS>"); if (!binary) out << ' '; WriteIntegerVector(out, binary, parents_); WriteToken(out, binary, "</PARENTS>"); if (!binary) out << ' '; WriteToken(out, binary, "<BASECLASSES>"); if (!binary) out << ' '; WriteToken(out, binary, "<NUMBASECLASSES>"); WriteBasicType(out, binary, num_baseclasses_); if (!binary) out << ' '; for (int32 bclass = 0; bclass < num_baseclasses_; bclass++) { WriteToken(out, binary, "<CLASS>"); WriteBasicType(out, binary, bclass); WriteBasicType(out, binary, static_cast<int32>( baseclasses_[bclass].size())); if (!binary) out << ' '; for (vector< pair<int32, int32> >::const_iterator it = baseclasses_[bclass].begin(), end = baseclasses_[bclass].end(); it != end; it++) { WriteBasicType(out, binary, it->first); WriteBasicType(out, binary, it->second); if (!binary) out << ' '; } WriteToken(out, binary, "</CLASS>"); if (!binary) out << ' '; } WriteToken(out, binary, "</BASECLASSES>"); if (!binary) out << ' '; } void RegressionTree::Read(std::istream &in, bool binary, const AmDiagGmm &am) { int32 total_gauss = 0; ExpectToken(in, binary, "<REGTREE>"); ExpectToken(in, binary, "<NUMNODES>"); ReadBasicType(in, binary, &num_nodes_); KALDI_ASSERT(num_nodes_ > 0); parents_.resize(static_cast<size_t>(num_nodes_)); ExpectToken(in, binary, "<PARENTS>"); ReadIntegerVector(in, binary, &parents_); ExpectToken(in, binary, "</PARENTS>"); ExpectToken(in, binary, "<BASECLASSES>"); ExpectToken(in, binary, "<NUMBASECLASSES>"); ReadBasicType(in, binary, &num_baseclasses_); KALDI_ASSERT(num_baseclasses_ >0); baseclasses_.resize(static_cast<size_t>(num_baseclasses_)); for (int32 bclass = 0; bclass < num_baseclasses_; bclass++) { ExpectToken(in, binary, "<CLASS>"); int32 class_id, num_comp, pdf_id, gauss_id; ReadBasicType(in, binary, &class_id); ReadBasicType(in, binary, &num_comp); KALDI_ASSERT(class_id == bclass && num_comp > 0); total_gauss += num_comp; baseclasses_[bclass].reserve(num_comp); for (int32 i = 0; i < num_comp; i++) { ReadBasicType(in, binary, &pdf_id); ReadBasicType(in, binary, &gauss_id); KALDI_ASSERT(pdf_id >= 0 && gauss_id >= 0); baseclasses_[bclass].push_back(std::make_pair(pdf_id, gauss_id)); } ExpectToken(in, binary, "</CLASS>"); } ExpectToken(in, binary, "</BASECLASSES>"); if (total_gauss != am.NumGauss()) KALDI_ERR << "Expecting " << am.NumGauss() << " Gaussians in " "regression tree, found " << total_gauss; MakeGauss2Bclass(am); } void RegressionTree::MakeGauss2Bclass(const AmDiagGmm &am) { gauss2bclass_.resize(am.NumPdfs()); for (int32 pdf_index = 0, num_pdfs = am.NumPdfs(); pdf_index < num_pdfs; ++pdf_index) { gauss2bclass_[pdf_index].resize(am.NumGaussInPdf(pdf_index)); } int32 total_gauss = 0; for (int32 bclass_index = 0; bclass_index < num_baseclasses_; ++bclass_index) { vector< pair<int32, int32> >::const_iterator itr = baseclasses_[bclass_index].begin(), end = baseclasses_[bclass_index].end(); for (; itr != end; ++itr) { KALDI_ASSERT(itr->first < am.NumPdfs() && itr->second < am.NumGaussInPdf(itr->first)); gauss2bclass_[itr->first][itr->second] = bclass_index; total_gauss++; } } if (total_gauss != am.NumGauss()) KALDI_ERR << "Expecting " << am.NumGauss() << " Gaussians in " "regression tree, found " << total_gauss; } } // namespace kaldi |