regression-tree.cc
15 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
// transform/regression-tree.cc
// Copyright 2009-2011 Saarland University
// Author: Arnab Ghoshal
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <utility>
using std::pair;
#include <vector>
using std::vector;
#include "transform/regression-tree.h"
#include "tree/clusterable-classes.h"
#include "util/common-utils.h"
namespace kaldi {
/// Top-down clustering of the Gaussians in a model based on their means.
void RegressionTree::BuildTree(const Vector<BaseFloat> &state_occs,
const std::vector<int32> &sil_indices,
const AmDiagGmm &am,
int32 max_clusters) {
KALDI_ASSERT(IsSortedAndUniq(sil_indices));
int32 dim = am.Dim(),
num_pdfs = static_cast<int32>(am.NumPdfs());
vector<Clusterable*> gauss_means;
// For each Gaussianin the model, the pair of (pdf, gaussian) indices.
vector< pair<int32, int32> > gauss_indices;
Vector<BaseFloat> tmp_mean(dim);
Vector<BaseFloat> tmp_var(dim);
BaseFloat var_floor = 0.01;
gauss2bclass_.resize(num_pdfs);
gauss_means.reserve(am.NumGauss()); // NOT resize, uses push_back
gauss_indices.reserve(am.NumGauss()); // NOT resize, uses push_back
for (int32 pdf_index = 0; pdf_index < num_pdfs; pdf_index++) {
gauss2bclass_[pdf_index].resize(am.GetPdf(pdf_index).NumGauss());
for (int32 num_gauss = am.GetPdf(pdf_index).NumGauss(),
gauss_index = 0; gauss_index < num_gauss; ++gauss_index) {
// don't include silence while clustering...
if (std::binary_search(sil_indices.begin(), sil_indices.end(), pdf_index))
continue;
am.GetGaussianMean(pdf_index, gauss_index, &tmp_mean);
am.GetGaussianVariance(pdf_index, gauss_index, &tmp_var);
tmp_var.AddVec2(1.0, tmp_mean); // make it x^2 stats.
BaseFloat this_weight = state_occs(pdf_index) *
(am.GetPdf(pdf_index).weights())(gauss_index);
tmp_mean.Scale(this_weight);
tmp_var.Scale(this_weight);
gauss_indices.push_back(std::make_pair(pdf_index, gauss_index));
gauss_means.push_back(new GaussClusterable(tmp_mean, tmp_var, var_floor,
this_weight));
}
}
vector<int32> leaves;
vector<int32> clust_parents;
int32 num_leaves;
TreeClusterOptions opts; // Use default options or get from somewhere else
TreeCluster(gauss_means,
(sil_indices.empty() ? max_clusters : max_clusters-1),
NULL /* clusters not needed */,
&leaves, &clust_parents, &num_leaves, opts);
if (sil_indices.empty()) { // no special treatment of silence...
num_baseclasses_ = static_cast<int32>(num_leaves);
baseclasses_.resize(num_leaves);
parents_.resize(clust_parents.size());
for (int32 i = 0, num_nodes = clust_parents.size(); i < num_nodes; i++) {
parents_[i] = static_cast<int32>(clust_parents[i]);
}
num_nodes_ = static_cast<int32>(clust_parents.size());
for (int32 i = 0; i < static_cast<int32>(gauss_indices.size()); i++) {
baseclasses_[leaves[i]].push_back(gauss_indices[i]);
gauss2bclass_[gauss_indices[i].first][gauss_indices[i].second] = leaves[i];
}
} else {
// separate top-level split between silence and speech...
// silence is node zero and new parent is last-numbered one.
num_baseclasses_ = static_cast<int32>(num_leaves+1); // +1 to include 0 == silence
baseclasses_.resize(num_leaves+1); // +1 to include 0 == silence
parents_.resize(clust_parents.size()+2); // +1 to include 0 == silence, +parent.
int32 top_node = clust_parents.size() + 1;
for (int32 i = 0; i < static_cast<int32>(clust_parents.size()); i++) {
parents_[i+1] = clust_parents[i]+1; // handle offsets
}
parents_[0] = top_node;
parents_[clust_parents.size()] = top_node; // old top node's parent is new top node.
parents_[top_node] = top_node; // being own parent is sign of being top node.
num_nodes_ = static_cast<int32>(clust_parents.size() + 2);
// Assign nonsilence Gaussians to their assigned classes (add one
// to all leaf indices, make room for silence class).
for (int32 i = 0; i < static_cast<int32>(gauss_indices.size()); i++) {
baseclasses_[leaves[i]+1].push_back(gauss_indices[i]);
gauss2bclass_[gauss_indices[i].first][gauss_indices[i].second] = leaves[i]+1;
}
// Assign silence Gaussians to zero'th baseclass.
for (int32 i = 0; i < static_cast<int32>(sil_indices.size()); i++) {
int32 pdf_index = sil_indices[i];
for (int32 j = 0; j < am.GetPdf(pdf_index).NumGauss(); j++) {
baseclasses_[0].push_back(std::make_pair(pdf_index, j));
gauss2bclass_[pdf_index][j] = 0;
}
}
}
DeletePointers(&gauss_means);
}
static bool GetActiveParents(int32 node, const vector<int32> &parents,
const vector<bool> &is_active,
vector<int32> *active_parents_out) {
KALDI_ASSERT(parents.size() == is_active.size());
KALDI_ASSERT(static_cast<size_t>(node) < parents.size());
active_parents_out->clear();
if (node == static_cast<int32> (parents.size() - 1)) { // root node
if (is_active[node]) {
active_parents_out->push_back(node);
return true;
} else {
return false;
}
}
bool ret_val = false;
while (node < static_cast<int32> (parents.size() - 1)) { // exclude the root
node = parents[node];
if (is_active[node]) {
active_parents_out->push_back(node);
ret_val = true;
}
}
return ret_val; // will return if not starting from root
}
/// Parses the regression tree and finds the nodes whose occupancies (read
/// from stats_in) are greater than min_count. The regclass_out vector has
/// size equal to number of baseclasses, and contains the regression class
/// index for each baseclass. The stats_out vector has size equal to number
/// of regression classes. Return value is true if at least one regression
/// class passed the count cutoff, false otherwise.
bool RegressionTree::GatherStats(const vector<AffineXformStats*> &stats_in,
double min_count,
vector<int32> *regclasses_out,
vector<AffineXformStats*> *stats_out) const {
KALDI_ASSERT(static_cast<int32>(stats_in.size()) == num_baseclasses_);
if (static_cast<int32>(regclasses_out->size()) != num_baseclasses_)
regclasses_out->resize(static_cast<size_t>(num_baseclasses_), -1);
if (num_baseclasses_ == 1) // Only root node in tree
KALDI_ASSERT(num_nodes_ == 1);
double total_occ = 0.0;
int32 num_regclasses = 0;
vector<double> node_occupancies(num_nodes_, 0.0);
vector<bool> generate_xform(num_nodes_, false);
vector<int32> regclasses(num_nodes_, -1);
// Go through the leaves (baseclasses) and find where to generate transforms
for (int32 bclass = 0; bclass < num_baseclasses_; bclass++) {
total_occ += stats_in[bclass]->beta_;
node_occupancies[bclass] = stats_in[bclass]->beta_;
if (num_baseclasses_ != 1) { // Don't count twice if tree only has root.
node_occupancies[parents_[bclass]] += node_occupancies[bclass];
}
if (node_occupancies[bclass] < min_count) {
// Not enough count, so pass the responsibility to the parent.
generate_xform[bclass] = false;
generate_xform[parents_[bclass]] = true;
} else { // generate at the leaf level.
generate_xform[bclass] = true;
regclasses[bclass] = num_regclasses++;
}
}
// Check whether there is enough data for the single global transform (at
// the root of the regression tree). If not, no transforms will be computed.
if (total_occ < min_count) {
// Make all baseclasses use the unit transform at the root.
for (int32 bclass = 0; bclass < num_baseclasses_; bclass++) {
(*regclasses_out)[bclass] = 0;
}
DeletePointers(stats_out);
stats_out->clear();
KALDI_WARN << "Not enough data to compute global transform. Occupancy at "
<< "root = " << total_occ << "<" << min_count;
return false;
}
// Now go through the non-leaf nodes and find where to generate transforms.
// Iterates only till num_nodes_ - 1 so that it doesn't count root twice.
for (int32 node = num_baseclasses_; node < num_nodes_ - 1; node++) {
node_occupancies[parents_[node]] += node_occupancies[node];
// Only bother with generating transforms if a child asked for it.
if (generate_xform[node]) {
if (node_occupancies[node] < min_count) {
// Not enough count, so pass the responsibility to the parent.
generate_xform[node] = false;
generate_xform[parents_[node]] = true;
} else { // transform will be generated at this level.
regclasses[node] = num_regclasses++;
}
}
}
AssertEqual(node_occupancies[num_nodes_-1], total_occ, 1.0e-9);
// If needed, generate a transform at the root.
if (generate_xform[num_nodes_-1] && regclasses[num_nodes_-1] < 0) {
KALDI_ASSERT(node_occupancies[num_nodes_-1] >= min_count);
regclasses[num_nodes_-1] = num_regclasses++;
}
// Initialize the accumulators for output stats.
// NOTE: memory is allocated here; be careful to delete the pointers
stats_out->resize(num_regclasses);
for (int32 r = 0; r < num_regclasses; r++) {
(*stats_out)[r] = new AffineXformStats();
(*stats_out)[r]->Init(stats_in[0]->dim_, stats_in[0]->G_.size());
}
// Finally go through the tree again and add stats
vector<int32> active_parents;
for (int32 bclass = 0; bclass < num_baseclasses_; bclass++) {
if (generate_xform[bclass]) {
KALDI_ASSERT(regclasses[bclass] > -1);
(*stats_out)[regclasses[bclass]]->CopyStats(*(stats_in[bclass]));
(*regclasses_out)[bclass] = regclasses[bclass];
if (GetActiveParents(bclass, parents_, generate_xform, &active_parents)) {
// Some other baseclass has less count
for (vector<int32>::const_iterator p = active_parents.begin(),
endp = active_parents.end(); p != endp; ++p) {
KALDI_ASSERT(regclasses[*p] > -1);
(*stats_out)[regclasses[*p]]->Add(*(stats_in[bclass]));
}
}
} else {
bool found = GetActiveParents(bclass, parents_, generate_xform,
&active_parents);
KALDI_ASSERT(found); // must have active parents
for (vector<int32>::const_iterator p = active_parents.begin(),
endp = active_parents.end(); p != endp; ++p) {
KALDI_ASSERT(regclasses[*p] > -1);
(*stats_out)[regclasses[*p]]->Add(*(stats_in[bclass]));
}
(*regclasses_out)[bclass] = regclasses[active_parents[0]];
}
}
KALDI_ASSERT(num_regclasses <= num_baseclasses_);
return true;
}
void RegressionTree::Write(std::ostream &out, bool binary) const {
WriteToken(out, binary, "<REGTREE>");
WriteToken(out, binary, "<NUMNODES>");
WriteBasicType(out, binary, num_nodes_);
if (!binary) out << '\n';
WriteToken(out, binary, "<PARENTS>");
if (!binary) out << '\n';
WriteIntegerVector(out, binary, parents_);
WriteToken(out, binary, "</PARENTS>");
if (!binary) out << '\n';
WriteToken(out, binary, "<BASECLASSES>");
if (!binary) out << '\n';
WriteToken(out, binary, "<NUMBASECLASSES>");
WriteBasicType(out, binary, num_baseclasses_);
if (!binary) out << '\n';
for (int32 bclass = 0; bclass < num_baseclasses_; bclass++) {
WriteToken(out, binary, "<CLASS>");
WriteBasicType(out, binary, bclass);
WriteBasicType(out, binary, static_cast<int32>(
baseclasses_[bclass].size()));
if (!binary) out << '\n';
for (vector< pair<int32, int32> >::const_iterator
it = baseclasses_[bclass].begin(), end = baseclasses_[bclass].end();
it != end; it++) {
WriteBasicType(out, binary, it->first);
WriteBasicType(out, binary, it->second);
if (!binary) out << '\n';
}
WriteToken(out, binary, "</CLASS>");
if (!binary) out << '\n';
}
WriteToken(out, binary, "</BASECLASSES>");
if (!binary) out << '\n';
}
void RegressionTree::Read(std::istream &in, bool binary,
const AmDiagGmm &am) {
int32 total_gauss = 0;
ExpectToken(in, binary, "<REGTREE>");
ExpectToken(in, binary, "<NUMNODES>");
ReadBasicType(in, binary, &num_nodes_);
KALDI_ASSERT(num_nodes_ > 0);
parents_.resize(static_cast<size_t>(num_nodes_));
ExpectToken(in, binary, "<PARENTS>");
ReadIntegerVector(in, binary, &parents_);
ExpectToken(in, binary, "</PARENTS>");
ExpectToken(in, binary, "<BASECLASSES>");
ExpectToken(in, binary, "<NUMBASECLASSES>");
ReadBasicType(in, binary, &num_baseclasses_);
KALDI_ASSERT(num_baseclasses_ >0);
baseclasses_.resize(static_cast<size_t>(num_baseclasses_));
for (int32 bclass = 0; bclass < num_baseclasses_; bclass++) {
ExpectToken(in, binary, "<CLASS>");
int32 class_id, num_comp, pdf_id, gauss_id;
ReadBasicType(in, binary, &class_id);
ReadBasicType(in, binary, &num_comp);
KALDI_ASSERT(class_id == bclass && num_comp > 0);
total_gauss += num_comp;
baseclasses_[bclass].reserve(num_comp);
for (int32 i = 0; i < num_comp; i++) {
ReadBasicType(in, binary, &pdf_id);
ReadBasicType(in, binary, &gauss_id);
KALDI_ASSERT(pdf_id >= 0 && gauss_id >= 0);
baseclasses_[bclass].push_back(std::make_pair(pdf_id, gauss_id));
}
ExpectToken(in, binary, "</CLASS>");
}
ExpectToken(in, binary, "</BASECLASSES>");
if (total_gauss != am.NumGauss())
KALDI_ERR << "Expecting " << am.NumGauss() << " Gaussians in "
"regression tree, found " << total_gauss;
MakeGauss2Bclass(am);
}
void RegressionTree::MakeGauss2Bclass(const AmDiagGmm &am) {
gauss2bclass_.resize(am.NumPdfs());
for (int32 pdf_index = 0, num_pdfs = am.NumPdfs(); pdf_index < num_pdfs;
++pdf_index) {
gauss2bclass_[pdf_index].resize(am.NumGaussInPdf(pdf_index));
}
int32 total_gauss = 0;
for (int32 bclass_index = 0; bclass_index < num_baseclasses_;
++bclass_index) {
vector< pair<int32, int32> >::const_iterator itr =
baseclasses_[bclass_index].begin(), end =
baseclasses_[bclass_index].end();
for (; itr != end; ++itr) {
KALDI_ASSERT(itr->first < am.NumPdfs() &&
itr->second < am.NumGaussInPdf(itr->first));
gauss2bclass_[itr->first][itr->second] = bclass_index;
total_gauss++;
}
}
if (total_gauss != am.NumGauss())
KALDI_ERR << "Expecting " << am.NumGauss() << " Gaussians in "
"regression tree, found " << total_gauss;
}
} // namespace kaldi