Blame view
src/transform/regtree-fmllr-diag-gmm.h
8.38 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
// transform/regtree-fmllr-diag-gmm.h // Copyright 2009-2011 Saarland University; Georg Stemmer; // Microsoft Corporation // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_TRANSFORM_REGTREE_FMLLR_DIAG_GMM_H_ #define KALDI_TRANSFORM_REGTREE_FMLLR_DIAG_GMM_H_ #include <vector> #include "base/kaldi-common.h" #include "gmm/am-diag-gmm.h" #include "transform/transform-common.h" #include "transform/regression-tree.h" #include "util/kaldi-table.h" #include "util/kaldi-holder.h" namespace kaldi { /// Configuration variables for FMLLR transforms struct RegtreeFmllrOptions { std::string update_type; ///< "full", "diag", "offset", "none" BaseFloat min_count; ///< Minimum occupancy for computing a transform int32 num_iters; ///< Number of iterations (if using an iterative update) bool use_regtree; ///< If 'true', find transforms to generate using regression tree. ///< If 'false', generate transforms for each baseclass. RegtreeFmllrOptions(): update_type("full"), min_count(1000.0), num_iters(10), use_regtree(true) { } void Register(OptionsItf *opts) { opts->Register("fmllr-update-type", &update_type, "Update type for fMLLR (\"full\"|\"diag\"|\"offset\"|\"none\")"); opts->Register("fmllr-min-count", &min_count, "Minimum count to estimate an fMLLR transform."); opts->Register("fmllr-num-iters", &num_iters, "Number of fMLLR iterations (if using an iterative update)."); opts->Register("fmllr-use-regtree", &use_regtree, "Use a regression-class tree for fMLLR."); } }; /** An FMLLR (feature-space MLLR) transformation, also called CMLLR * (constrained MLLR) is an affine transformation of the feature vectors. * This class supports multiple transforms, and a regression tree. * For a single, feature-level transformation see fmllr-diag-gmm-global.h * Note: the "regression classes" are the classes after tree-clustering, * which are smaller in number than the "base classes" (these correspond * to the leaves of the tree). */ class RegtreeFmllrDiagGmm { public: RegtreeFmllrDiagGmm() : dim_(-1), num_xforms_(-1), valid_logdet_(false) {} explicit RegtreeFmllrDiagGmm(const RegtreeFmllrDiagGmm &other) : dim_(other.dim_), num_xforms_(other.num_xforms_), xform_matrices_(other.xform_matrices_), logdet_(other.logdet_), valid_logdet_(other.valid_logdet_), bclass2xforms_(other.bclass2xforms_) {} ~RegtreeFmllrDiagGmm() {} /// Allocates memory for transform matrix & bias vector void Init(size_t num_xforms, size_t dim); void Validate(); ///< Checks whether the various parameters are consistent /// Sets transform matrix to identity and bias vector to zero void SetUnit(); /// Computes the log-determinant of the Jacobians for each transform void ComputeLogDets(); /// Get the transformed features for each of the transforms. void TransformFeature(const VectorBase<BaseFloat> &in, std::vector< Vector<BaseFloat> > *out) const; void Write(std::ostream &out_stream, bool binary) const; void Read(std::istream &in_stream, bool binary); /// Accessors int32 Dim() const { return dim_; } int32 NumBaseClasses() const { return bclass2xforms_.size(); } int32 NumRegClasses() const { return num_xforms_; } void GetXformMatrix(int32 xform_index, Matrix<BaseFloat> *out) const; void GetLogDets(VectorBase<BaseFloat> *out) const; int32 Base2RegClass(int32 bclass) const { return bclass2xforms_[bclass]; } /// Mutators void SetParameters(const MatrixBase<BaseFloat> &mat, size_t regclass); void set_bclass2xforms(const std::vector<int32> &in) { bclass2xforms_ = in; } private: int32 dim_; ///< Dimension of feature vectors int32 num_xforms_; ///< Number of transform matrices std::vector< Matrix<BaseFloat> > xform_matrices_; ///< Transform matrices Vector<BaseFloat> logdet_; ///< Log-determinants of the Jacobians bool valid_logdet_; ///< Whether logdets are for current transforms /// For each baseclass index of which transform to use; -1 => no xform std::vector<int32> bclass2xforms_; void operator = (const RegtreeFmllrDiagGmm&); // Disallow assignment operator }; inline void RegtreeFmllrDiagGmm::GetXformMatrix(int32 xform_index, Matrix<BaseFloat> *out) const { if (xform_index >= num_xforms_) { KALDI_ERR << "Index (" << xform_index << ") out of range [0, " << num_xforms_ << "]"; } out->Resize(dim_, dim_ + 1); out->CopyFromMat(xform_matrices_[xform_index], kNoTrans); } inline void RegtreeFmllrDiagGmm::SetParameters(const MatrixBase<BaseFloat> &mat, size_t regclass) { xform_matrices_[regclass].CopyFromMat(mat, kNoTrans); valid_logdet_ = false; } inline void RegtreeFmllrDiagGmm::GetLogDets(VectorBase<BaseFloat> *out) const { KALDI_ASSERT(valid_logdet_ && out->Dim() == logdet_.Dim()); out->CopyFromVec(logdet_); } typedef TableWriter< KaldiObjectHolder<RegtreeFmllrDiagGmm> > RegtreeFmllrDiagGmmWriter; typedef RandomAccessTableReader< KaldiObjectHolder<RegtreeFmllrDiagGmm> > RandomAccessRegtreeFmllrDiagGmmReader; typedef RandomAccessTableReaderMapped< KaldiObjectHolder<RegtreeFmllrDiagGmm> > RandomAccessRegtreeFmllrDiagGmmReaderMapped; typedef SequentialTableReader< KaldiObjectHolder<RegtreeFmllrDiagGmm> > RegtreeFmllrDiagGmmSeqReader; /** \class RegtreeFmllrDiagGmmAccs * Class for computing the accumulators needed for the maximum-likelihood * estimate of FMLLR transforms for an acoustic model that uses diagonal * Gaussian mixture models as emission densities. */ class RegtreeFmllrDiagGmmAccs { public: RegtreeFmllrDiagGmmAccs() : num_baseclasses_(-1), dim_(-1) {} ~RegtreeFmllrDiagGmmAccs() { DeletePointers(&baseclass_stats_); } void Init(size_t num_bclass, size_t dim); void SetZero(); /// Accumulate stats for a single GMM in the model; returns log likelihood. /// This does not work if the features have already been transformed /// with multiple feature transforms (so you can't use use this to /// do a 2nd pass of regression-tree fMLLR estimation, which as I write /// (Dan, 2016) I'm not sure that this framework even supports. BaseFloat AccumulateForGmm(const RegressionTree ®tree, const AmDiagGmm &am, const VectorBase<BaseFloat> &data, size_t pdf_index, BaseFloat weight); /// Accumulate stats for a single Gaussian component in the model. void AccumulateForGaussian(const RegressionTree ®tree, const AmDiagGmm &am, const VectorBase<BaseFloat> &data, size_t pdf_index, size_t gauss_index, BaseFloat weight); void Update(const RegressionTree ®tree, const RegtreeFmllrOptions &opts, RegtreeFmllrDiagGmm *out_fmllr, BaseFloat *auxf_impr, BaseFloat *tot_t) const; void Write(std::ostream &out_stream, bool binary) const; void Read(std::istream &in_stream, bool binary, bool add); /// Accessors int32 Dim() const { return dim_; } int32 NumBaseClasses() const { return num_baseclasses_; } const std::vector<AffineXformStats*> &baseclass_stats() const { return baseclass_stats_; } private: /// Per-baseclass stats; used for accumulation std::vector<AffineXformStats*> baseclass_stats_; /// Number of baseclasses int32 num_baseclasses_; /// Dimension of feature vectors int32 dim_; // Cannot have copy constructor and assigment operator KALDI_DISALLOW_COPY_AND_ASSIGN(RegtreeFmllrDiagGmmAccs); }; } // namespace kaldi #endif // KALDI_TRANSFORM_REGTREE_FMLLR_DIAG_GMM_H_ |