regtree-fmllr-diag-gmm.h
8.38 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// transform/regtree-fmllr-diag-gmm.h
// Copyright 2009-2011 Saarland University; Georg Stemmer;
// Microsoft Corporation
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_TRANSFORM_REGTREE_FMLLR_DIAG_GMM_H_
#define KALDI_TRANSFORM_REGTREE_FMLLR_DIAG_GMM_H_
#include <vector>
#include "base/kaldi-common.h"
#include "gmm/am-diag-gmm.h"
#include "transform/transform-common.h"
#include "transform/regression-tree.h"
#include "util/kaldi-table.h"
#include "util/kaldi-holder.h"
namespace kaldi {
/// Configuration variables for FMLLR transforms
struct RegtreeFmllrOptions {
std::string update_type; ///< "full", "diag", "offset", "none"
BaseFloat min_count; ///< Minimum occupancy for computing a transform
int32 num_iters; ///< Number of iterations (if using an iterative update)
bool use_regtree; ///< If 'true', find transforms to generate using regression tree.
///< If 'false', generate transforms for each baseclass.
RegtreeFmllrOptions(): update_type("full"), min_count(1000.0),
num_iters(10), use_regtree(true) { }
void Register(OptionsItf *opts) {
opts->Register("fmllr-update-type", &update_type,
"Update type for fMLLR (\"full\"|\"diag\"|\"offset\"|\"none\")");
opts->Register("fmllr-min-count", &min_count,
"Minimum count to estimate an fMLLR transform.");
opts->Register("fmllr-num-iters", &num_iters,
"Number of fMLLR iterations (if using an iterative update).");
opts->Register("fmllr-use-regtree", &use_regtree,
"Use a regression-class tree for fMLLR.");
}
};
/** An FMLLR (feature-space MLLR) transformation, also called CMLLR
* (constrained MLLR) is an affine transformation of the feature vectors.
* This class supports multiple transforms, and a regression tree.
* For a single, feature-level transformation see fmllr-diag-gmm-global.h
* Note: the "regression classes" are the classes after tree-clustering,
* which are smaller in number than the "base classes" (these correspond
* to the leaves of the tree).
*/
class RegtreeFmllrDiagGmm {
public:
RegtreeFmllrDiagGmm() : dim_(-1), num_xforms_(-1), valid_logdet_(false) {}
explicit RegtreeFmllrDiagGmm(const RegtreeFmllrDiagGmm &other)
: dim_(other.dim_), num_xforms_(other.num_xforms_),
xform_matrices_(other.xform_matrices_), logdet_(other.logdet_),
valid_logdet_(other.valid_logdet_),
bclass2xforms_(other.bclass2xforms_) {}
~RegtreeFmllrDiagGmm() {}
/// Allocates memory for transform matrix & bias vector
void Init(size_t num_xforms, size_t dim);
void Validate(); ///< Checks whether the various parameters are consistent
/// Sets transform matrix to identity and bias vector to zero
void SetUnit();
/// Computes the log-determinant of the Jacobians for each transform
void ComputeLogDets();
/// Get the transformed features for each of the transforms.
void TransformFeature(const VectorBase<BaseFloat> &in,
std::vector< Vector<BaseFloat> > *out) const;
void Write(std::ostream &out_stream, bool binary) const;
void Read(std::istream &in_stream, bool binary);
/// Accessors
int32 Dim() const { return dim_; }
int32 NumBaseClasses() const { return bclass2xforms_.size(); }
int32 NumRegClasses() const { return num_xforms_; }
void GetXformMatrix(int32 xform_index, Matrix<BaseFloat> *out) const;
void GetLogDets(VectorBase<BaseFloat> *out) const;
int32 Base2RegClass(int32 bclass) const { return bclass2xforms_[bclass]; }
/// Mutators
void SetParameters(const MatrixBase<BaseFloat> &mat, size_t regclass);
void set_bclass2xforms(const std::vector<int32> &in) { bclass2xforms_ = in; }
private:
int32 dim_; ///< Dimension of feature vectors
int32 num_xforms_; ///< Number of transform matrices
std::vector< Matrix<BaseFloat> > xform_matrices_; ///< Transform matrices
Vector<BaseFloat> logdet_; ///< Log-determinants of the Jacobians
bool valid_logdet_; ///< Whether logdets are for current transforms
/// For each baseclass index of which transform to use; -1 => no xform
std::vector<int32> bclass2xforms_;
void operator = (const RegtreeFmllrDiagGmm&); // Disallow assignment operator
};
inline void RegtreeFmllrDiagGmm::GetXformMatrix(int32 xform_index,
Matrix<BaseFloat> *out) const {
if (xform_index >= num_xforms_) {
KALDI_ERR << "Index (" << xform_index << ") out of range [0, "
<< num_xforms_ << "]";
}
out->Resize(dim_, dim_ + 1);
out->CopyFromMat(xform_matrices_[xform_index], kNoTrans);
}
inline void RegtreeFmllrDiagGmm::SetParameters(const MatrixBase<BaseFloat> &mat,
size_t regclass) {
xform_matrices_[regclass].CopyFromMat(mat, kNoTrans);
valid_logdet_ = false;
}
inline void RegtreeFmllrDiagGmm::GetLogDets(VectorBase<BaseFloat> *out) const {
KALDI_ASSERT(valid_logdet_ && out->Dim() == logdet_.Dim());
out->CopyFromVec(logdet_);
}
typedef TableWriter< KaldiObjectHolder<RegtreeFmllrDiagGmm> > RegtreeFmllrDiagGmmWriter;
typedef RandomAccessTableReader< KaldiObjectHolder<RegtreeFmllrDiagGmm> >
RandomAccessRegtreeFmllrDiagGmmReader;
typedef RandomAccessTableReaderMapped< KaldiObjectHolder<RegtreeFmllrDiagGmm> >
RandomAccessRegtreeFmllrDiagGmmReaderMapped;
typedef SequentialTableReader< KaldiObjectHolder<RegtreeFmllrDiagGmm> > RegtreeFmllrDiagGmmSeqReader;
/** \class RegtreeFmllrDiagGmmAccs
* Class for computing the accumulators needed for the maximum-likelihood
* estimate of FMLLR transforms for an acoustic model that uses diagonal
* Gaussian mixture models as emission densities.
*/
class RegtreeFmllrDiagGmmAccs {
public:
RegtreeFmllrDiagGmmAccs() : num_baseclasses_(-1), dim_(-1) {}
~RegtreeFmllrDiagGmmAccs() { DeletePointers(&baseclass_stats_); }
void Init(size_t num_bclass, size_t dim);
void SetZero();
/// Accumulate stats for a single GMM in the model; returns log likelihood.
/// This does not work if the features have already been transformed
/// with multiple feature transforms (so you can't use use this to
/// do a 2nd pass of regression-tree fMLLR estimation, which as I write
/// (Dan, 2016) I'm not sure that this framework even supports.
BaseFloat AccumulateForGmm(const RegressionTree ®tree,
const AmDiagGmm &am,
const VectorBase<BaseFloat> &data,
size_t pdf_index, BaseFloat weight);
/// Accumulate stats for a single Gaussian component in the model.
void AccumulateForGaussian(const RegressionTree ®tree,
const AmDiagGmm &am,
const VectorBase<BaseFloat> &data,
size_t pdf_index, size_t gauss_index,
BaseFloat weight);
void Update(const RegressionTree ®tree, const RegtreeFmllrOptions &opts,
RegtreeFmllrDiagGmm *out_fmllr, BaseFloat *auxf_impr,
BaseFloat *tot_t) const;
void Write(std::ostream &out_stream, bool binary) const;
void Read(std::istream &in_stream, bool binary, bool add);
/// Accessors
int32 Dim() const { return dim_; }
int32 NumBaseClasses() const { return num_baseclasses_; }
const std::vector<AffineXformStats*> &baseclass_stats() const {
return baseclass_stats_;
}
private:
/// Per-baseclass stats; used for accumulation
std::vector<AffineXformStats*> baseclass_stats_;
/// Number of baseclasses
int32 num_baseclasses_;
/// Dimension of feature vectors
int32 dim_;
// Cannot have copy constructor and assigment operator
KALDI_DISALLOW_COPY_AND_ASSIGN(RegtreeFmllrDiagGmmAccs);
};
} // namespace kaldi
#endif // KALDI_TRANSFORM_REGTREE_FMLLR_DIAG_GMM_H_