Blame view
src/tree/context-dep-test.cc
4.93 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
// tree/context-dep-test.cc // Copyright 2009-2011 Microsoft Corporation // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "tree/context-dep.h" #include "tree/clusterable-classes.h" #include "util/kaldi-io.h" namespace kaldi { void TestContextDep() { BaseFloat varFloor = 0.1; size_t dim = 1 + Rand() % 20; size_t nGauss = 1 + Rand() % 10; std::vector< GaussClusterable * > v(nGauss); for (size_t i = 0;i < nGauss;i++) { v[i] = new GaussClusterable(dim, varFloor); } for (size_t i = 0;i < nGauss;i++) { size_t nPoints = 1 + Rand() % 30; for (size_t j = 0;j < nPoints;j++) { BaseFloat post = 0.5 *(Rand()%3); Vector<BaseFloat> vec(dim); for (size_t k = 0;k < dim;k++) vec(k) = RandGauss(); v[i]->AddStats(vec, post); } } for (size_t i = 0;i+1 < nGauss;i++) { BaseFloat like_before = (v[i]->Objf() + v[i+1]->Objf()) / (v[i]->Normalizer() + v[i+1]->Normalizer()); Clusterable *tmp = v[i]->Copy(); tmp->Add(*(v[i+1])); BaseFloat like_after = tmp->Objf() / tmp->Normalizer(); std::cout << "Like_before = " << like_before <<", after = "<<like_after <<" over "<<tmp->Normalizer()<<" frames. "; if (tmp->Normalizer() > 0.1) KALDI_ASSERT(like_after <= like_before); // should get worse after combining stats. delete tmp; } for (size_t i = 0;i < nGauss;i++) delete v[i]; } void TestMonophoneContextDependency() { std::set<int32> phones_set; for (size_t i = 1; i <= 20; i++) phones_set.insert(1 + Rand() % 30); std::vector<int32> phones; CopySetToVector(phones_set, &phones); std::vector<int32> phone2num_classes(1 + *std::max_element(phones.begin(), phones.end())); for (size_t i = 0; i < phones.size(); i++) phone2num_classes[phones[i]] = 3; ContextDependency *cd = MonophoneContextDependency(phones, phone2num_classes); std::vector<std::vector<std::pair<int32, int32> > > pdf_info; cd->GetPdfInfo(phones, phone2num_classes, &pdf_info); KALDI_ASSERT(pdf_info.size() == phones.size() * 3 && pdf_info[Rand() % pdf_info.size()].size() == 1); delete cd; } // Also tests I/O of ContextDependency void TestGenRandContextDependency() { bool binary = (Rand()%2 == 0); size_t num_phones = 1 + Rand() % 10; std::set<int32> phones_set; while (phones_set.size() < num_phones) phones_set.insert(Rand() % (num_phones + 5)); std::vector<int32> phones; CopySetToVector(phones_set, &phones); bool ensure_all_covered = (Rand() % 2 == 0); std::vector<int32> phone2num_pdf_classes; ContextDependency *dep = GenRandContextDependency(phones, ensure_all_covered, // false == don't ensure all phones covered. &phone2num_pdf_classes); // stuff here. const char *filename = "tmpf"; { Output ko(filename, binary); std::ostream &outfile = ko.Stream(); { // Test GetPdfInfo std::vector<std::vector<std::pair<int32, int32> > > pdf_info; dep->GetPdfInfo(phones, phone2num_pdf_classes, &pdf_info); std::vector<bool> all_phones(phones.back()+1, false); // making sure all covered. for (size_t i = 0; i < pdf_info.size(); i++) { KALDI_ASSERT(!pdf_info[i].empty()); // make sure pdf seen. for (size_t j = 0; j < pdf_info[i].size(); j++) { int32 idx = pdf_info[i][j].first; KALDI_ASSERT(static_cast<size_t>(idx) < all_phones.size()); all_phones[pdf_info[i][j].first] = true; } } if (ensure_all_covered) for (size_t k = 0; k < phones.size(); k++) KALDI_ASSERT(all_phones[phones[k]]); } dep->Write(outfile, binary); ko.Close(); } { bool binary_in; Input ki(filename, &binary_in); std::istream &infile = ki.Stream(); ContextDependency dep2; dep2.Read(infile, binary_in); std::ostringstream ostr1, ostr2; dep->Write(ostr1, false); dep2.Write(ostr2, false); KALDI_ASSERT(ostr1.str() == ostr2.str()); } delete dep; unlink("tmpf"); std::cout << "Note: any \"serious error\" warnings preceding this line are OK. "; } } // end namespace kaldi int main() { for (size_t i = 0;i < 10;i++) { kaldi::TestContextDep(); kaldi::TestGenRandContextDependency(); // Also tests I/O of ContextDependency kaldi::TestMonophoneContextDependency(); } } |