context-dep-test.cc
4.93 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
// tree/context-dep-test.cc
// Copyright 2009-2011 Microsoft Corporation
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "tree/context-dep.h"
#include "tree/clusterable-classes.h"
#include "util/kaldi-io.h"
namespace kaldi {
void TestContextDep() {
BaseFloat varFloor = 0.1;
size_t dim = 1 + Rand() % 20;
size_t nGauss = 1 + Rand() % 10;
std::vector< GaussClusterable * > v(nGauss);
for (size_t i = 0;i < nGauss;i++) {
v[i] = new GaussClusterable(dim, varFloor);
}
for (size_t i = 0;i < nGauss;i++) {
size_t nPoints = 1 + Rand() % 30;
for (size_t j = 0;j < nPoints;j++) {
BaseFloat post = 0.5 *(Rand()%3);
Vector<BaseFloat> vec(dim);
for (size_t k = 0;k < dim;k++) vec(k) = RandGauss();
v[i]->AddStats(vec, post);
}
}
for (size_t i = 0;i+1 < nGauss;i++) {
BaseFloat like_before = (v[i]->Objf() + v[i+1]->Objf()) / (v[i]->Normalizer() + v[i+1]->Normalizer());
Clusterable *tmp = v[i]->Copy();
tmp->Add(*(v[i+1]));
BaseFloat like_after = tmp->Objf() / tmp->Normalizer();
std::cout << "Like_before = " << like_before <<", after = "<<like_after <<" over "<<tmp->Normalizer()<<" frames.\n";
if (tmp->Normalizer() > 0.1)
KALDI_ASSERT(like_after <= like_before); // should get worse after combining stats.
delete tmp;
}
for (size_t i = 0;i < nGauss;i++)
delete v[i];
}
void TestMonophoneContextDependency() {
std::set<int32> phones_set;
for (size_t i = 1; i <= 20; i++) phones_set.insert(1 + Rand() % 30);
std::vector<int32> phones;
CopySetToVector(phones_set, &phones);
std::vector<int32> phone2num_classes(1 + *std::max_element(phones.begin(), phones.end()));
for (size_t i = 0; i < phones.size(); i++)
phone2num_classes[phones[i]] = 3;
ContextDependency *cd = MonophoneContextDependency(phones,
phone2num_classes);
std::vector<std::vector<std::pair<int32, int32> > > pdf_info;
cd->GetPdfInfo(phones, phone2num_classes, &pdf_info);
KALDI_ASSERT(pdf_info.size() == phones.size() * 3 &&
pdf_info[Rand() % pdf_info.size()].size() == 1);
delete cd;
}
// Also tests I/O of ContextDependency
void TestGenRandContextDependency() {
bool binary = (Rand()%2 == 0);
size_t num_phones = 1 + Rand() % 10;
std::set<int32> phones_set;
while (phones_set.size() < num_phones) phones_set.insert(Rand() % (num_phones + 5));
std::vector<int32> phones;
CopySetToVector(phones_set, &phones);
bool ensure_all_covered = (Rand() % 2 == 0);
std::vector<int32> phone2num_pdf_classes;
ContextDependency *dep = GenRandContextDependency(phones,
ensure_all_covered, // false == don't ensure all phones covered.
&phone2num_pdf_classes);
// stuff here.
const char *filename = "tmpf";
{
Output ko(filename, binary);
std::ostream &outfile = ko.Stream();
{ // Test GetPdfInfo
std::vector<std::vector<std::pair<int32, int32> > > pdf_info;
dep->GetPdfInfo(phones, phone2num_pdf_classes, &pdf_info);
std::vector<bool> all_phones(phones.back()+1, false); // making sure all covered.
for (size_t i = 0; i < pdf_info.size(); i++) {
KALDI_ASSERT(!pdf_info[i].empty()); // make sure pdf seen.
for (size_t j = 0; j < pdf_info[i].size(); j++) {
int32 idx = pdf_info[i][j].first;
KALDI_ASSERT(static_cast<size_t>(idx) < all_phones.size());
all_phones[pdf_info[i][j].first] = true;
}
}
if (ensure_all_covered)
for (size_t k = 0; k < phones.size(); k++) KALDI_ASSERT(all_phones[phones[k]]);
}
dep->Write(outfile, binary);
ko.Close();
}
{
bool binary_in;
Input ki(filename, &binary_in);
std::istream &infile = ki.Stream();
ContextDependency dep2;
dep2.Read(infile, binary_in);
std::ostringstream ostr1, ostr2;
dep->Write(ostr1, false);
dep2.Write(ostr2, false);
KALDI_ASSERT(ostr1.str() == ostr2.str());
}
delete dep;
unlink("tmpf");
std::cout << "Note: any \"serious error\" warnings preceding this line are OK.\n";
}
} // end namespace kaldi
int main() {
for (size_t i = 0;i < 10;i++) {
kaldi::TestContextDep();
kaldi::TestGenRandContextDependency(); // Also tests I/O of ContextDependency
kaldi::TestMonophoneContextDependency();
}
}