Blame view
src/tree/event-map.cc
16.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
// tree/event-map.cc // Copyright 2009-2011 Microsoft Corporation // 2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <set> #include <string> #include "tree/event-map.h" namespace kaldi { void EventMap::Write(std::ostream &os, bool binary, EventMap *emap) { if (emap == NULL) { WriteToken(os, binary, "NULL"); } else { emap->Write(os, binary); } } EventMap *EventMap::Read(std::istream &is, bool binary) { char c = Peek(is, binary); if (c == 'N') { ExpectToken(is, binary, "NULL"); return NULL; } else if (c == 'C') { return ConstantEventMap::Read(is, binary); } else if (c == 'T') { return TableEventMap::Read(is, binary); } else if (c == 'S') { return SplitEventMap::Read(is, binary); } else { KALDI_ERR << "EventMap::read, was not expecting character " << CharToString(c) << ", at file position " << is.tellg(); return NULL; // suppress warning. } } void ConstantEventMap::Write(std::ostream &os, bool binary) { WriteToken(os, binary, "CE"); WriteBasicType(os, binary, answer_); if (os.fail()) { KALDI_ERR << "ConstantEventMap::Write(), could not write to stream."; } } // static member function. ConstantEventMap* ConstantEventMap::Read(std::istream &is, bool binary) { ExpectToken(is, binary, "CE"); EventAnswerType answer; ReadBasicType(is, binary, &answer); return new ConstantEventMap(answer); } EventMap* TableEventMap::Prune() const { std::vector<EventMap*> table; table.reserve(table_.size()); EventValueType size = table_.size(); for (EventKeyType value = 0; value < size; value++) { if (table_[value] != NULL) { EventMap *pruned_map = table_[value]->Prune(); if (pruned_map != NULL) { table.resize(value + 1, NULL); table[value] = pruned_map; } } } if (table.empty()) return NULL; else return new TableEventMap(key_, table); } EventMap* TableEventMap::MapValues( const unordered_set<EventKeyType> &keys_to_map, const unordered_map<EventValueType,EventValueType> &value_map) const { std::vector<EventMap*> table; table.reserve(table_.size()); EventValueType size = table_.size(); for (EventValueType value = 0; value < size; value++) { if (table_[value] != NULL) { EventMap *this_map = table_[value]->MapValues(keys_to_map, value_map); EventValueType mapped_value; if (keys_to_map.count(key_) == 0) mapped_value = value; else { unordered_map<EventValueType,EventValueType>::const_iterator iter = value_map.find(value); if (iter == value_map.end()) { KALDI_ERR << "Could not map value " << value << " for key " << key_; } mapped_value = iter->second; } KALDI_ASSERT(mapped_value >= 0); if (static_cast<EventValueType>(table.size()) <= mapped_value) table.resize(mapped_value + 1, NULL); if (table[mapped_value] != NULL) KALDI_ERR << "Multiple values map to the same point: this code cannot " << "handle this case."; table[mapped_value] = this_map; } } return new TableEventMap(key_, table); } void TableEventMap::Write(std::ostream &os, bool binary) { WriteToken(os, binary, "TE"); WriteBasicType(os, binary, key_); uint32 size = table_.size(); WriteBasicType(os, binary, size); WriteToken(os, binary, "("); for (size_t t = 0; t < size; t++) { // This Write function works for NULL pointers. EventMap::Write(os, binary, table_[t]); } WriteToken(os, binary, ")"); if (!binary) os << ' '; if (os.fail()) { KALDI_ERR << "TableEventMap::Write(), could not write to stream."; } } // static member function. TableEventMap* TableEventMap::Read(std::istream &is, bool binary) { ExpectToken(is, binary, "TE"); EventKeyType key; ReadBasicType(is, binary, &key); uint32 size; ReadBasicType(is, binary, &size); std::vector<EventMap*> table(size); ExpectToken(is, binary, "("); for (size_t t = 0; t < size; t++) { // This Read function works for NULL pointers. table[t] = EventMap::Read(is, binary); } ExpectToken(is, binary, ")"); return new TableEventMap(key, table); } EventMap* SplitEventMap::Prune() const { EventMap *yes = yes_->Prune(), *no = no_->Prune(); if (yes == NULL && no == NULL) return NULL; else if (yes == NULL) return no; else if (no == NULL) return yes; else return new SplitEventMap(key_, yes_set_, yes, no); } EventMap* SplitEventMap::MapValues( const unordered_set<EventKeyType> &keys_to_map, const unordered_map<EventValueType,EventValueType> &value_map) const { EventMap *yes = yes_->MapValues(keys_to_map, value_map), *no = no_->MapValues(keys_to_map, value_map); if (keys_to_map.count(key_) == 0) { return new SplitEventMap(key_, yes_set_, yes, no); } else { std::vector<EventValueType> yes_set; for (ConstIntegerSet<EventValueType>::iterator iter = yes_set_.begin(); iter != yes_set_.end(); ++iter) { EventValueType value = *iter; unordered_map<EventValueType, EventValueType>::const_iterator map_iter = value_map.find(value); if (map_iter == value_map.end()) KALDI_ERR << "Value " << value << ", for key " << key_ << ", cannot be mapped."; EventValueType mapped_value = map_iter->second; yes_set.push_back(mapped_value); } SortAndUniq(&yes_set); return new SplitEventMap(key_, yes_set, yes, no); } } void SplitEventMap::Write(std::ostream &os, bool binary) { WriteToken(os, binary, "SE"); WriteBasicType(os, binary, key_); // WriteIntegerVector(os, binary, yes_set_); yes_set_.Write(os, binary); KALDI_ASSERT(yes_ != NULL && no_ != NULL); WriteToken(os, binary, "{"); yes_->Write(os, binary); no_->Write(os, binary); WriteToken(os, binary, "}"); if (!binary) os << ' '; if (os.fail()) { KALDI_ERR << "SplitEventMap::Write(), could not write to stream."; } } // static member function. SplitEventMap* SplitEventMap::Read(std::istream &is, bool binary) { ExpectToken(is, binary, "SE"); EventKeyType key; ReadBasicType(is, binary, &key); // std::vector<EventValueType> yes_set; // ReadIntegerVector(is, binary, &yes_set); ConstIntegerSet<EventValueType> yes_set; yes_set.Read(is, binary); ExpectToken(is, binary, "{"); EventMap *yes = EventMap::Read(is, binary); EventMap *no = EventMap::Read(is, binary); ExpectToken(is, binary, "}"); // yes and no should be non-NULL because NULL values are not valid for SplitEventMap; // the constructor checks this. Therefore this is an unlikely error. if (yes == NULL || no == NULL) KALDI_ERR << "SplitEventMap::Read, NULL pointers."; return new SplitEventMap(key, yes_set, yes, no); } void WriteEventType(std::ostream &os, bool binary, const EventType &evec) { WriteToken(os, binary, "EV"); uint32 size = evec.size(); WriteBasicType(os, binary, size); for (size_t i = 0; i < size; i++) { WriteBasicType(os, binary, evec[i].first); WriteBasicType(os, binary, evec[i].second); } if (!binary) os << ' '; } void ReadEventType(std::istream &is, bool binary, EventType *evec) { KALDI_ASSERT(evec != NULL); ExpectToken(is, binary, "EV"); uint32 size; ReadBasicType(is, binary, &size); evec->resize(size); for (size_t i = 0; i < size; i++) { ReadBasicType(is, binary, &( (*evec)[i].first )); ReadBasicType(is, binary, &( (*evec)[i].second )); } } std::string EventTypeToString(const EventType &evec) { std::stringstream ss; EventType::const_iterator iter = evec.begin(), end = evec.end(); std::string sep = ""; for (; iter != end; ++iter) { ss << sep << iter->first <<":"<<iter->second; sep = " "; } return ss.str(); } size_t EventMapVectorHash::operator ()(const EventType &vec) { EventType::const_iterator iter = vec.begin(), end = vec.end(); size_t ans = 0; const size_t kPrime1=47087, kPrime2=1321; for (; iter != end; ++iter) { #ifdef KALDI_PARANOID // Check names are distinct and increasing. EventType::const_iterator iter2=iter; iter2++; if (iter2 != end) { KALDI_ASSERT(iter->first < iter2->first); } #endif ans += iter->first + kPrime1*iter->second; ans *= kPrime2; } return ans; } // static member of EventMap. void EventMap::Check(const std::vector<std::pair<EventKeyType, EventValueType> > &event) { // will crash if not sorted or has duplicates size_t sz = event.size(); for (size_t i = 0;i+1 < sz;i++) KALDI_ASSERT(event[i].first < event[i+1].first); } // static member of EventMap. bool EventMap::Lookup(const EventType &event, EventKeyType key, EventValueType *ans) { // this assumes that the "event" array is sorted (e.g. on the KeyType value; // just doing std::sort will do this) and has no duplicate values with the same // key. call Check() to verify this. #ifdef KALDI_PARANOID Check(event); #endif std::vector<std::pair<EventKeyType, EventValueType> >::const_iterator begin = event.begin(), end = event.end(), middle; // "middle" is used as a temporary variable in the algorithm. // begin and sz store the current region where the first instance of // "value" might appear. // This is like this stl algorithm "lower_bound". size_t sz = end-begin, half; while (sz > 0) { half = sz >> 1; middle = begin + half; // "end" here is now reallly the middle. if (middle->first < key) { begin = middle; ++begin; sz = sz - half - 1; } else { sz = half; } } if (begin != end && begin->first == key) { *ans = begin->second; return true; } else { return false; } } TableEventMap::TableEventMap(EventKeyType key, const std::map<EventValueType, EventMap*> &map_in): key_(key) { if (map_in.size() == 0) return; // empty table. else { EventValueType highest_val = map_in.rbegin()->first; table_.resize(highest_val+1, NULL); std::map<EventValueType, EventMap*>::const_iterator iter = map_in.begin(), end = map_in.end(); for (; iter != end; ++iter) { KALDI_ASSERT(iter->first >= 0 && iter->first <= highest_val); table_[iter->first] = iter->second; } } } TableEventMap::TableEventMap(EventKeyType key, const std::map<EventValueType, EventAnswerType> &map_in): key_(key) { if (map_in.size() == 0) return; // empty table. else { EventValueType highest_val = map_in.rbegin()->first; table_.resize(highest_val+1, NULL); std::map<EventValueType, EventAnswerType>::const_iterator iter = map_in.begin(), end = map_in.end(); for (; iter != end; ++iter) { KALDI_ASSERT(iter->first >= 0 && iter->first <= highest_val); table_[iter->first] = new ConstantEventMap(iter->second); } } } // This function is only used inside this .cc file so make it static. static bool IsLeafNode(const EventMap *e) { std::vector<EventMap*> children; e->GetChildren(&children); return children.empty(); } // This helper function called from GetTreeStructure outputs the tree structure // of the EventMap in a more convenient form. At input, the objects pointed to // by last three pointers should be empty. The function will return false if // the EventMap "map" doesn't have the required structure (see the comments in // the header for GetTreeStructure). If it returns true, then at output, // "nonleaf_nodes" will be a vector of pointers to the EventMap* values // corresponding to nonleaf nodes, in an order where the root node comes first // and child nodes are after their parents; "nonleaf_parents" will be a map // from each nonleaf node to its parent, and the root node points to itself; // and "leaf_parents" will be a map from the numeric id of each leaf node // (corresponding to the value returned by the EventMap) to its parent node; // leaf_parents will contain no NULL pointers, otherwise we would have returned // false as the EventMap would not have had the required structure. static bool GetTreeStructureInternal( const EventMap &map, std::vector<const EventMap*> *nonleaf_nodes, std::map<const EventMap*, const EventMap*> *nonleaf_parents, std::vector<const EventMap*> *leaf_parents) { std::vector<const EventMap*> queue; // parents to be processed. const EventMap *top_node = ↦ queue.push_back(top_node); nonleaf_nodes->push_back(top_node); (*nonleaf_parents)[top_node] = top_node; while (!queue.empty()) { const EventMap *parent = queue.back(); queue.pop_back(); std::vector<EventMap*> children; parent->GetChildren(&children); KALDI_ASSERT(!children.empty()); for (size_t i = 0; i < children.size(); i++) { EventMap *child = children[i]; if (IsLeafNode(child)) { int32 leaf; if (!child->Map(EventType(), &leaf) || leaf < 0) return false; if (static_cast<int32>(leaf_parents->size()) <= leaf) leaf_parents->resize(leaf+1, NULL); if ((*leaf_parents)[leaf] != NULL) { KALDI_WARN << "Repeated leaf! Did you suppress leaf clustering when building the tree?"; return false; // repeated leaf. } (*leaf_parents)[leaf] = parent; } else { nonleaf_nodes->push_back(child); (*nonleaf_parents)[child] = parent; queue.push_back(child); } } } for (size_t i = 0; i < leaf_parents->size(); i++) if ((*leaf_parents)[i] == NULL) { KALDI_WARN << "non-consecutively numbered leaves"; return false; } // non-consecutively numbered leaves. KALDI_ASSERT(!leaf_parents->empty()); // or no leaves. return true; } // See the header for a description of what this function does. bool GetTreeStructure(const EventMap &map, int32 *num_leaves, std::vector<int32> *parents) { KALDI_ASSERT (num_leaves != NULL && parents != NULL); if (IsLeafNode(&map)) { // handle degenerate case where root is a leaf. int32 leaf; if (!map.Map(EventType(), &leaf) || leaf != 0) return false; *num_leaves = 1; parents->resize(1); (*parents)[0] = 0; return true; } // This vector gives the address of nonleaf nodes in the tree, // in a numbering where 0 is the root and children always come // after parents. std::vector<const EventMap*> nonleaf_nodes; // Map from each nonleaf node to its parent node // (or to itself for the root node). std::map<const EventMap*, const EventMap*> nonleaf_parents; // Map from leaf nodes to their parent nodes. std::vector<const EventMap*> leaf_parents; if (!GetTreeStructureInternal(map, &nonleaf_nodes, &nonleaf_parents, &leaf_parents)) return false; *num_leaves = leaf_parents.size(); int32 num_nodes = leaf_parents.size() + nonleaf_nodes.size(); std::map<const EventMap*, int32> nonleaf_indices; // number the nonleaf indices so they come after the leaf // indices and the root is last. for (size_t i = 0; i < nonleaf_nodes.size(); i++) nonleaf_indices[nonleaf_nodes[i]] = num_nodes - i - 1; parents->resize(num_nodes); for (size_t i = 0; i < leaf_parents.size(); i++) { KALDI_ASSERT(nonleaf_indices.count(leaf_parents[i]) != 0); (*parents)[i] = nonleaf_indices[leaf_parents[i]]; } for (size_t i = 0; i < nonleaf_nodes.size(); i++) { KALDI_ASSERT(nonleaf_indices.count(nonleaf_nodes[i]) != 0); KALDI_ASSERT(nonleaf_parents.count(nonleaf_nodes[i]) != 0); KALDI_ASSERT(nonleaf_indices.count(nonleaf_parents[nonleaf_nodes[i]]) != 0); int32 index = nonleaf_indices[nonleaf_nodes[i]], parent_index = nonleaf_indices[nonleaf_parents[nonleaf_nodes[i]]]; KALDI_ASSERT(index > 0 && parent_index >= index); (*parents)[index] = parent_index; } for (int32 i = 0; i < num_nodes; i++) KALDI_ASSERT ((*parents)[i] > i || (i+1==num_nodes && (*parents)[i] == i)); return true; } } // end namespace kaldi |