event-map.cc
16.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
// tree/event-map.cc
// Copyright 2009-2011 Microsoft Corporation
// 2013 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <set>
#include <string>
#include "tree/event-map.h"
namespace kaldi {
void EventMap::Write(std::ostream &os, bool binary, EventMap *emap) {
if (emap == NULL) {
WriteToken(os, binary, "NULL");
} else {
emap->Write(os, binary);
}
}
EventMap *EventMap::Read(std::istream &is, bool binary) {
char c = Peek(is, binary);
if (c == 'N') {
ExpectToken(is, binary, "NULL");
return NULL;
} else if (c == 'C') {
return ConstantEventMap::Read(is, binary);
} else if (c == 'T') {
return TableEventMap::Read(is, binary);
} else if (c == 'S') {
return SplitEventMap::Read(is, binary);
} else {
KALDI_ERR << "EventMap::read, was not expecting character " << CharToString(c)
<< ", at file position " << is.tellg();
return NULL; // suppress warning.
}
}
void ConstantEventMap::Write(std::ostream &os, bool binary) {
WriteToken(os, binary, "CE");
WriteBasicType(os, binary, answer_);
if (os.fail()) {
KALDI_ERR << "ConstantEventMap::Write(), could not write to stream.";
}
}
// static member function.
ConstantEventMap* ConstantEventMap::Read(std::istream &is, bool binary) {
ExpectToken(is, binary, "CE");
EventAnswerType answer;
ReadBasicType(is, binary, &answer);
return new ConstantEventMap(answer);
}
EventMap* TableEventMap::Prune() const {
std::vector<EventMap*> table;
table.reserve(table_.size());
EventValueType size = table_.size();
for (EventKeyType value = 0; value < size; value++) {
if (table_[value] != NULL) {
EventMap *pruned_map = table_[value]->Prune();
if (pruned_map != NULL) {
table.resize(value + 1, NULL);
table[value] = pruned_map;
}
}
}
if (table.empty()) return NULL;
else return new TableEventMap(key_, table);
}
EventMap* TableEventMap::MapValues(
const unordered_set<EventKeyType> &keys_to_map,
const unordered_map<EventValueType,EventValueType> &value_map) const {
std::vector<EventMap*> table;
table.reserve(table_.size());
EventValueType size = table_.size();
for (EventValueType value = 0; value < size; value++) {
if (table_[value] != NULL) {
EventMap *this_map = table_[value]->MapValues(keys_to_map, value_map);
EventValueType mapped_value;
if (keys_to_map.count(key_) == 0) mapped_value = value;
else {
unordered_map<EventValueType,EventValueType>::const_iterator
iter = value_map.find(value);
if (iter == value_map.end()) {
KALDI_ERR << "Could not map value " << value
<< " for key " << key_;
}
mapped_value = iter->second;
}
KALDI_ASSERT(mapped_value >= 0);
if (static_cast<EventValueType>(table.size()) <= mapped_value)
table.resize(mapped_value + 1, NULL);
if (table[mapped_value] != NULL)
KALDI_ERR << "Multiple values map to the same point: this code cannot "
<< "handle this case.";
table[mapped_value] = this_map;
}
}
return new TableEventMap(key_, table);
}
void TableEventMap::Write(std::ostream &os, bool binary) {
WriteToken(os, binary, "TE");
WriteBasicType(os, binary, key_);
uint32 size = table_.size();
WriteBasicType(os, binary, size);
WriteToken(os, binary, "(");
for (size_t t = 0; t < size; t++) {
// This Write function works for NULL pointers.
EventMap::Write(os, binary, table_[t]);
}
WriteToken(os, binary, ")");
if (!binary) os << '\n';
if (os.fail()) {
KALDI_ERR << "TableEventMap::Write(), could not write to stream.";
}
}
// static member function.
TableEventMap* TableEventMap::Read(std::istream &is, bool binary) {
ExpectToken(is, binary, "TE");
EventKeyType key;
ReadBasicType(is, binary, &key);
uint32 size;
ReadBasicType(is, binary, &size);
std::vector<EventMap*> table(size);
ExpectToken(is, binary, "(");
for (size_t t = 0; t < size; t++) {
// This Read function works for NULL pointers.
table[t] = EventMap::Read(is, binary);
}
ExpectToken(is, binary, ")");
return new TableEventMap(key, table);
}
EventMap* SplitEventMap::Prune() const {
EventMap *yes = yes_->Prune(),
*no = no_->Prune();
if (yes == NULL && no == NULL) return NULL;
else if (yes == NULL) return no;
else if (no == NULL) return yes;
else return new SplitEventMap(key_, yes_set_, yes, no);
}
EventMap* SplitEventMap::MapValues(
const unordered_set<EventKeyType> &keys_to_map,
const unordered_map<EventValueType,EventValueType> &value_map) const {
EventMap *yes = yes_->MapValues(keys_to_map, value_map),
*no = no_->MapValues(keys_to_map, value_map);
if (keys_to_map.count(key_) == 0) {
return new SplitEventMap(key_, yes_set_, yes, no);
} else {
std::vector<EventValueType> yes_set;
for (ConstIntegerSet<EventValueType>::iterator iter = yes_set_.begin();
iter != yes_set_.end();
++iter) {
EventValueType value = *iter;
unordered_map<EventValueType, EventValueType>::const_iterator
map_iter = value_map.find(value);
if (map_iter == value_map.end())
KALDI_ERR << "Value " << value << ", for key "
<< key_ << ", cannot be mapped.";
EventValueType mapped_value = map_iter->second;
yes_set.push_back(mapped_value);
}
SortAndUniq(&yes_set);
return new SplitEventMap(key_, yes_set, yes, no);
}
}
void SplitEventMap::Write(std::ostream &os, bool binary) {
WriteToken(os, binary, "SE");
WriteBasicType(os, binary, key_);
// WriteIntegerVector(os, binary, yes_set_);
yes_set_.Write(os, binary);
KALDI_ASSERT(yes_ != NULL && no_ != NULL);
WriteToken(os, binary, "{");
yes_->Write(os, binary);
no_->Write(os, binary);
WriteToken(os, binary, "}");
if (!binary) os << '\n';
if (os.fail()) {
KALDI_ERR << "SplitEventMap::Write(), could not write to stream.";
}
}
// static member function.
SplitEventMap* SplitEventMap::Read(std::istream &is, bool binary) {
ExpectToken(is, binary, "SE");
EventKeyType key;
ReadBasicType(is, binary, &key);
// std::vector<EventValueType> yes_set;
// ReadIntegerVector(is, binary, &yes_set);
ConstIntegerSet<EventValueType> yes_set;
yes_set.Read(is, binary);
ExpectToken(is, binary, "{");
EventMap *yes = EventMap::Read(is, binary);
EventMap *no = EventMap::Read(is, binary);
ExpectToken(is, binary, "}");
// yes and no should be non-NULL because NULL values are not valid for SplitEventMap;
// the constructor checks this. Therefore this is an unlikely error.
if (yes == NULL || no == NULL) KALDI_ERR << "SplitEventMap::Read, NULL pointers.";
return new SplitEventMap(key, yes_set, yes, no);
}
void WriteEventType(std::ostream &os, bool binary, const EventType &evec) {
WriteToken(os, binary, "EV");
uint32 size = evec.size();
WriteBasicType(os, binary, size);
for (size_t i = 0; i < size; i++) {
WriteBasicType(os, binary, evec[i].first);
WriteBasicType(os, binary, evec[i].second);
}
if (!binary) os << '\n';
}
void ReadEventType(std::istream &is, bool binary, EventType *evec) {
KALDI_ASSERT(evec != NULL);
ExpectToken(is, binary, "EV");
uint32 size;
ReadBasicType(is, binary, &size);
evec->resize(size);
for (size_t i = 0; i < size; i++) {
ReadBasicType(is, binary, &( (*evec)[i].first ));
ReadBasicType(is, binary, &( (*evec)[i].second ));
}
}
std::string EventTypeToString(const EventType &evec) {
std::stringstream ss;
EventType::const_iterator iter = evec.begin(), end = evec.end();
std::string sep = "";
for (; iter != end; ++iter) {
ss << sep << iter->first <<":"<<iter->second;
sep = " ";
}
return ss.str();
}
size_t EventMapVectorHash::operator ()(const EventType &vec) {
EventType::const_iterator iter = vec.begin(), end = vec.end();
size_t ans = 0;
const size_t kPrime1=47087, kPrime2=1321;
for (; iter != end; ++iter) {
#ifdef KALDI_PARANOID // Check names are distinct and increasing.
EventType::const_iterator iter2=iter; iter2++;
if (iter2 != end) { KALDI_ASSERT(iter->first < iter2->first); }
#endif
ans += iter->first + kPrime1*iter->second;
ans *= kPrime2;
}
return ans;
}
// static member of EventMap.
void EventMap::Check(const std::vector<std::pair<EventKeyType, EventValueType> > &event) {
// will crash if not sorted or has duplicates
size_t sz = event.size();
for (size_t i = 0;i+1 < sz;i++)
KALDI_ASSERT(event[i].first < event[i+1].first);
}
// static member of EventMap.
bool EventMap::Lookup(const EventType &event,
EventKeyType key, EventValueType *ans) {
// this assumes that the "event" array is sorted (e.g. on the KeyType value;
// just doing std::sort will do this) and has no duplicate values with the same
// key. call Check() to verify this.
#ifdef KALDI_PARANOID
Check(event);
#endif
std::vector<std::pair<EventKeyType, EventValueType> >::const_iterator
begin = event.begin(),
end = event.end(),
middle; // "middle" is used as a temporary variable in the algorithm.
// begin and sz store the current region where the first instance of
// "value" might appear.
// This is like this stl algorithm "lower_bound".
size_t sz = end-begin, half;
while (sz > 0) {
half = sz >> 1;
middle = begin + half; // "end" here is now reallly the middle.
if (middle->first < key) {
begin = middle;
++begin;
sz = sz - half - 1;
} else {
sz = half;
}
}
if (begin != end && begin->first == key) {
*ans = begin->second;
return true;
} else {
return false;
}
}
TableEventMap::TableEventMap(EventKeyType key, const std::map<EventValueType, EventMap*> &map_in): key_(key) {
if (map_in.size() == 0)
return; // empty table.
else {
EventValueType highest_val = map_in.rbegin()->first;
table_.resize(highest_val+1, NULL);
std::map<EventValueType, EventMap*>::const_iterator iter = map_in.begin(), end = map_in.end();
for (; iter != end; ++iter) {
KALDI_ASSERT(iter->first >= 0 && iter->first <= highest_val);
table_[iter->first] = iter->second;
}
}
}
TableEventMap::TableEventMap(EventKeyType key, const std::map<EventValueType, EventAnswerType> &map_in): key_(key) {
if (map_in.size() == 0)
return; // empty table.
else {
EventValueType highest_val = map_in.rbegin()->first;
table_.resize(highest_val+1, NULL);
std::map<EventValueType, EventAnswerType>::const_iterator iter = map_in.begin(), end = map_in.end();
for (; iter != end; ++iter) {
KALDI_ASSERT(iter->first >= 0 && iter->first <= highest_val);
table_[iter->first] = new ConstantEventMap(iter->second);
}
}
}
// This function is only used inside this .cc file so make it static.
static bool IsLeafNode(const EventMap *e) {
std::vector<EventMap*> children;
e->GetChildren(&children);
return children.empty();
}
// This helper function called from GetTreeStructure outputs the tree structure
// of the EventMap in a more convenient form. At input, the objects pointed to
// by last three pointers should be empty. The function will return false if
// the EventMap "map" doesn't have the required structure (see the comments in
// the header for GetTreeStructure). If it returns true, then at output,
// "nonleaf_nodes" will be a vector of pointers to the EventMap* values
// corresponding to nonleaf nodes, in an order where the root node comes first
// and child nodes are after their parents; "nonleaf_parents" will be a map
// from each nonleaf node to its parent, and the root node points to itself;
// and "leaf_parents" will be a map from the numeric id of each leaf node
// (corresponding to the value returned by the EventMap) to its parent node;
// leaf_parents will contain no NULL pointers, otherwise we would have returned
// false as the EventMap would not have had the required structure.
static bool GetTreeStructureInternal(
const EventMap &map,
std::vector<const EventMap*> *nonleaf_nodes,
std::map<const EventMap*, const EventMap*> *nonleaf_parents,
std::vector<const EventMap*> *leaf_parents) {
std::vector<const EventMap*> queue; // parents to be processed.
const EventMap *top_node = ↦
queue.push_back(top_node);
nonleaf_nodes->push_back(top_node);
(*nonleaf_parents)[top_node] = top_node;
while (!queue.empty()) {
const EventMap *parent = queue.back();
queue.pop_back();
std::vector<EventMap*> children;
parent->GetChildren(&children);
KALDI_ASSERT(!children.empty());
for (size_t i = 0; i < children.size(); i++) {
EventMap *child = children[i];
if (IsLeafNode(child)) {
int32 leaf;
if (!child->Map(EventType(), &leaf)
|| leaf < 0) return false;
if (static_cast<int32>(leaf_parents->size()) <= leaf)
leaf_parents->resize(leaf+1, NULL);
if ((*leaf_parents)[leaf] != NULL) {
KALDI_WARN << "Repeated leaf! Did you suppress leaf clustering when building the tree?";
return false; // repeated leaf.
}
(*leaf_parents)[leaf] = parent;
} else {
nonleaf_nodes->push_back(child);
(*nonleaf_parents)[child] = parent;
queue.push_back(child);
}
}
}
for (size_t i = 0; i < leaf_parents->size(); i++)
if ((*leaf_parents)[i] == NULL) {
KALDI_WARN << "non-consecutively numbered leaves";
return false;
}
// non-consecutively numbered leaves.
KALDI_ASSERT(!leaf_parents->empty()); // or no leaves.
return true;
}
// See the header for a description of what this function does.
bool GetTreeStructure(const EventMap &map,
int32 *num_leaves,
std::vector<int32> *parents) {
KALDI_ASSERT (num_leaves != NULL && parents != NULL);
if (IsLeafNode(&map)) { // handle degenerate case where root is a leaf.
int32 leaf;
if (!map.Map(EventType(), &leaf)
|| leaf != 0) return false;
*num_leaves = 1;
parents->resize(1);
(*parents)[0] = 0;
return true;
}
// This vector gives the address of nonleaf nodes in the tree,
// in a numbering where 0 is the root and children always come
// after parents.
std::vector<const EventMap*> nonleaf_nodes;
// Map from each nonleaf node to its parent node
// (or to itself for the root node).
std::map<const EventMap*, const EventMap*> nonleaf_parents;
// Map from leaf nodes to their parent nodes.
std::vector<const EventMap*> leaf_parents;
if (!GetTreeStructureInternal(map, &nonleaf_nodes,
&nonleaf_parents,
&leaf_parents)) return false;
*num_leaves = leaf_parents.size();
int32 num_nodes = leaf_parents.size() + nonleaf_nodes.size();
std::map<const EventMap*, int32> nonleaf_indices;
// number the nonleaf indices so they come after the leaf
// indices and the root is last.
for (size_t i = 0; i < nonleaf_nodes.size(); i++)
nonleaf_indices[nonleaf_nodes[i]] = num_nodes - i - 1;
parents->resize(num_nodes);
for (size_t i = 0; i < leaf_parents.size(); i++) {
KALDI_ASSERT(nonleaf_indices.count(leaf_parents[i]) != 0);
(*parents)[i] = nonleaf_indices[leaf_parents[i]];
}
for (size_t i = 0; i < nonleaf_nodes.size(); i++) {
KALDI_ASSERT(nonleaf_indices.count(nonleaf_nodes[i]) != 0);
KALDI_ASSERT(nonleaf_parents.count(nonleaf_nodes[i]) != 0);
KALDI_ASSERT(nonleaf_indices.count(nonleaf_parents[nonleaf_nodes[i]]) != 0);
int32 index = nonleaf_indices[nonleaf_nodes[i]],
parent_index = nonleaf_indices[nonleaf_parents[nonleaf_nodes[i]]];
KALDI_ASSERT(index > 0 && parent_index >= index);
(*parents)[index] = parent_index;
}
for (int32 i = 0; i < num_nodes; i++)
KALDI_ASSERT ((*parents)[i] > i || (i+1==num_nodes && (*parents)[i] == i));
return true;
}
} // end namespace kaldi