Blame view
tools/cub-1.8.0/cub/agent/agent_reduce.cuh
16.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /** * \file * cub::AgentReduce implements a stateful abstraction of CUDA thread blocks for participating in device-wide reduction . */ #pragma once #include <iterator> #include "../block/block_load.cuh" #include "../block/block_reduce.cuh" #include "../grid/grid_mapping.cuh" #include "../grid/grid_even_share.cuh" #include "../util_type.cuh" #include "../iterator/cache_modified_input_iterator.cuh" #include "../util_namespace.cuh" /// Optional outer namespace(s) CUB_NS_PREFIX /// CUB namespace namespace cub { /****************************************************************************** * Tuning policy types ******************************************************************************/ /** * Parameterizable tuning policy type for AgentReduce */ template < int _BLOCK_THREADS, ///< Threads per thread block int _ITEMS_PER_THREAD, ///< Items per thread (per tile of input) int _VECTOR_LOAD_LENGTH, ///< Number of items per vectorized load BlockReduceAlgorithm _BLOCK_ALGORITHM, ///< Cooperative block-wide reduction algorithm to use CacheLoadModifier _LOAD_MODIFIER> ///< Cache load modifier for reading input elements struct AgentReducePolicy { enum { BLOCK_THREADS = _BLOCK_THREADS, ///< Threads per thread block ITEMS_PER_THREAD = _ITEMS_PER_THREAD, ///< Items per thread (per tile of input) VECTOR_LOAD_LENGTH = _VECTOR_LOAD_LENGTH, ///< Number of items per vectorized load }; static const BlockReduceAlgorithm BLOCK_ALGORITHM = _BLOCK_ALGORITHM; ///< Cooperative block-wide reduction algorithm to use static const CacheLoadModifier LOAD_MODIFIER = _LOAD_MODIFIER; ///< Cache load modifier for reading input elements }; /****************************************************************************** * Thread block abstractions ******************************************************************************/ /** * \brief AgentReduce implements a stateful abstraction of CUDA thread blocks for participating in device-wide reduction . * * Each thread reduces only the values it loads. If \p FIRST_TILE, this * partial reduction is stored into \p thread_aggregate. Otherwise it is * accumulated into \p thread_aggregate. */ template < typename AgentReducePolicy, ///< Parameterized AgentReducePolicy tuning policy type typename InputIteratorT, ///< Random-access iterator type for input typename OutputIteratorT, ///< Random-access iterator type for output typename OffsetT, ///< Signed integer type for global offsets typename ReductionOp> ///< Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt> struct AgentReduce { //--------------------------------------------------------------------- // Types and constants //--------------------------------------------------------------------- /// The input value type typedef typename std::iterator_traits<InputIteratorT>::value_type InputT; /// The output value type typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE), // OutputT = (if output iterator's value type is void) ? typename std::iterator_traits<InputIteratorT>::value_type, // ... then the input iterator's value type, typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputT; // ... else the output iterator's value type /// Vector type of InputT for data movement typedef typename CubVector<InputT, AgentReducePolicy::VECTOR_LOAD_LENGTH>::Type VectorT; /// Input iterator wrapper type (for applying cache modifier) typedef typename If<IsPointer<InputIteratorT>::VALUE, CacheModifiedInputIterator<AgentReducePolicy::LOAD_MODIFIER, InputT, OffsetT>, // Wrap the native input pointer with CacheModifiedInputIterator InputIteratorT>::Type // Directly use the supplied input iterator type WrappedInputIteratorT; /// Constants enum { BLOCK_THREADS = AgentReducePolicy::BLOCK_THREADS, ITEMS_PER_THREAD = AgentReducePolicy::ITEMS_PER_THREAD, VECTOR_LOAD_LENGTH = CUB_MIN(ITEMS_PER_THREAD, AgentReducePolicy::VECTOR_LOAD_LENGTH), TILE_ITEMS = BLOCK_THREADS * ITEMS_PER_THREAD, // Can vectorize according to the policy if the input iterator is a native pointer to a primitive type ATTEMPT_VECTORIZATION = (VECTOR_LOAD_LENGTH > 1) && (ITEMS_PER_THREAD % VECTOR_LOAD_LENGTH == 0) && (IsPointer<InputIteratorT>::VALUE) && Traits<InputT>::PRIMITIVE, }; static const CacheLoadModifier LOAD_MODIFIER = AgentReducePolicy::LOAD_MODIFIER; static const BlockReduceAlgorithm BLOCK_ALGORITHM = AgentReducePolicy::BLOCK_ALGORITHM; /// Parameterized BlockReduce primitive typedef BlockReduce<OutputT, BLOCK_THREADS, AgentReducePolicy::BLOCK_ALGORITHM> BlockReduceT; /// Shared memory type required by this thread block struct _TempStorage { typename BlockReduceT::TempStorage reduce; }; /// Alias wrapper allowing storage to be unioned struct TempStorage : Uninitialized<_TempStorage> {}; //--------------------------------------------------------------------- // Per-thread fields //--------------------------------------------------------------------- _TempStorage& temp_storage; ///< Reference to temp_storage InputIteratorT d_in; ///< Input data to reduce WrappedInputIteratorT d_wrapped_in; ///< Wrapped input data to reduce ReductionOp reduction_op; ///< Binary reduction operator //--------------------------------------------------------------------- // Utility //--------------------------------------------------------------------- // Whether or not the input is aligned with the vector type (specialized for types we can vectorize) template <typename Iterator> static __device__ __forceinline__ bool IsAligned( Iterator d_in, Int2Type<true> /*can_vectorize*/) { return (size_t(d_in) & (sizeof(VectorT) - 1)) == 0; } // Whether or not the input is aligned with the vector type (specialized for types we cannot vectorize) template <typename Iterator> static __device__ __forceinline__ bool IsAligned( Iterator /*d_in*/, Int2Type<false> /*can_vectorize*/) { return false; } //--------------------------------------------------------------------- // Constructor //--------------------------------------------------------------------- /** * Constructor */ __device__ __forceinline__ AgentReduce( TempStorage& temp_storage, ///< Reference to temp_storage InputIteratorT d_in, ///< Input data to reduce ReductionOp reduction_op) ///< Binary reduction operator : temp_storage(temp_storage.Alias()), d_in(d_in), d_wrapped_in(d_in), reduction_op(reduction_op) {} //--------------------------------------------------------------------- // Tile consumption //--------------------------------------------------------------------- /** * Consume a full tile of input (non-vectorized) */ template <int IS_FIRST_TILE> __device__ __forceinline__ void ConsumeTile( OutputT &thread_aggregate, OffsetT block_offset, ///< The offset the tile to consume int /*valid_items*/, ///< The number of valid items in the tile Int2Type<true> /*is_full_tile*/, ///< Whether or not this is a full tile Int2Type<false> /*can_vectorize*/) ///< Whether or not we can vectorize loads { OutputT items[ITEMS_PER_THREAD]; // Load items in striped fashion LoadDirectStriped<BLOCK_THREADS>(threadIdx.x, d_wrapped_in + block_offset, items); // Reduce items within each thread stripe thread_aggregate = (IS_FIRST_TILE) ? internal::ThreadReduce(items, reduction_op) : internal::ThreadReduce(items, reduction_op, thread_aggregate); } /** * Consume a full tile of input (vectorized) */ template <int IS_FIRST_TILE> __device__ __forceinline__ void ConsumeTile( OutputT &thread_aggregate, OffsetT block_offset, ///< The offset the tile to consume int /*valid_items*/, ///< The number of valid items in the tile Int2Type<true> /*is_full_tile*/, ///< Whether or not this is a full tile Int2Type<true> /*can_vectorize*/) ///< Whether or not we can vectorize loads { // Alias items as an array of VectorT and load it in striped fashion enum { WORDS = ITEMS_PER_THREAD / VECTOR_LOAD_LENGTH }; // Fabricate a vectorized input iterator InputT *d_in_unqualified = const_cast<InputT*>(d_in) + block_offset + (threadIdx.x * VECTOR_LOAD_LENGTH); CacheModifiedInputIterator<AgentReducePolicy::LOAD_MODIFIER, VectorT, OffsetT> d_vec_in( reinterpret_cast<VectorT*>(d_in_unqualified)); // Load items as vector items InputT input_items[ITEMS_PER_THREAD]; VectorT *vec_items = reinterpret_cast<VectorT*>(input_items); #pragma unroll for (int i = 0; i < WORDS; ++i) vec_items[i] = d_vec_in[BLOCK_THREADS * i]; // Convert from input type to output type OutputT items[ITEMS_PER_THREAD]; #pragma unroll for (int i = 0; i < ITEMS_PER_THREAD; ++i) items[i] = input_items[i]; // Reduce items within each thread stripe thread_aggregate = (IS_FIRST_TILE) ? internal::ThreadReduce(items, reduction_op) : internal::ThreadReduce(items, reduction_op, thread_aggregate); } /** * Consume a partial tile of input */ template <int IS_FIRST_TILE, int CAN_VECTORIZE> __device__ __forceinline__ void ConsumeTile( OutputT &thread_aggregate, OffsetT block_offset, ///< The offset the tile to consume int valid_items, ///< The number of valid items in the tile Int2Type<false> /*is_full_tile*/, ///< Whether or not this is a full tile Int2Type<CAN_VECTORIZE> /*can_vectorize*/) ///< Whether or not we can vectorize loads { // Partial tile int thread_offset = threadIdx.x; // Read first item if ((IS_FIRST_TILE) && (thread_offset < valid_items)) { thread_aggregate = d_wrapped_in[block_offset + thread_offset]; thread_offset += BLOCK_THREADS; } // Continue reading items (block-striped) while (thread_offset < valid_items) { OutputT item = d_wrapped_in[block_offset + thread_offset]; thread_aggregate = reduction_op(thread_aggregate, item); thread_offset += BLOCK_THREADS; } } //--------------------------------------------------------------- // Consume a contiguous segment of tiles //--------------------------------------------------------------------- /** * \brief Reduce a contiguous segment of input tiles */ template <int CAN_VECTORIZE> __device__ __forceinline__ OutputT ConsumeRange( GridEvenShare<OffsetT> &even_share, ///< GridEvenShare descriptor Int2Type<CAN_VECTORIZE> can_vectorize) ///< Whether or not we can vectorize loads { OutputT thread_aggregate; if (even_share.block_offset + TILE_ITEMS > even_share.block_end) { // First tile isn't full (not all threads have valid items) int valid_items = even_share.block_end - even_share.block_offset; ConsumeTile<true>(thread_aggregate, even_share.block_offset, valid_items, Int2Type<false>(), can_vectorize); return BlockReduceT(temp_storage.reduce).Reduce(thread_aggregate, reduction_op, valid_items); } // At least one full block ConsumeTile<true>(thread_aggregate, even_share.block_offset, TILE_ITEMS, Int2Type<true>(), can_vectorize); even_share.block_offset += even_share.block_stride; // Consume subsequent full tiles of input while (even_share.block_offset + TILE_ITEMS <= even_share.block_end) { ConsumeTile<false>(thread_aggregate, even_share.block_offset, TILE_ITEMS, Int2Type<true>(), can_vectorize); even_share.block_offset += even_share.block_stride; } // Consume a partially-full tile if (even_share.block_offset < even_share.block_end) { int valid_items = even_share.block_end - even_share.block_offset; ConsumeTile<false>(thread_aggregate, even_share.block_offset, valid_items, Int2Type<false>(), can_vectorize); } // Compute block-wide reduction (all threads have valid items) return BlockReduceT(temp_storage.reduce).Reduce(thread_aggregate, reduction_op); } /** * \brief Reduce a contiguous segment of input tiles */ __device__ __forceinline__ OutputT ConsumeRange( OffsetT block_offset, ///< [in] Threadblock begin offset (inclusive) OffsetT block_end) ///< [in] Threadblock end offset (exclusive) { GridEvenShare<OffsetT> even_share; even_share.template BlockInit<TILE_ITEMS>(block_offset, block_end); return (IsAligned(d_in + block_offset, Int2Type<ATTEMPT_VECTORIZATION>())) ? ConsumeRange(even_share, Int2Type<true && ATTEMPT_VECTORIZATION>()) : ConsumeRange(even_share, Int2Type<false && ATTEMPT_VECTORIZATION>()); } /** * Reduce a contiguous segment of input tiles */ __device__ __forceinline__ OutputT ConsumeTiles( GridEvenShare<OffsetT> &even_share) ///< [in] GridEvenShare descriptor { // Initialize GRID_MAPPING_STRIP_MINE even-share descriptor for this thread block even_share.template BlockInit<TILE_ITEMS, GRID_MAPPING_STRIP_MINE>(); return (IsAligned(d_in, Int2Type<ATTEMPT_VECTORIZATION>())) ? ConsumeRange(even_share, Int2Type<true && ATTEMPT_VECTORIZATION>()) : ConsumeRange(even_share, Int2Type<false && ATTEMPT_VECTORIZATION>()); } }; } // CUB namespace CUB_NS_POSTFIX // Optional outer namespace(s) |