Blame view

tools/cub-1.8.0/cub/agent/agent_reduce.cuh 16.5 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
  /******************************************************************************
   * Copyright (c) 2011, Duane Merrill.  All rights reserved.
   * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
   *
   * Redistribution and use in source and binary forms, with or without
   * modification, are permitted provided that the following conditions are met:
   *     * Redistributions of source code must retain the above copyright
   *       notice, this list of conditions and the following disclaimer.
   *     * Redistributions in binary form must reproduce the above copyright
   *       notice, this list of conditions and the following disclaimer in the
   *       documentation and/or other materials provided with the distribution.
   *     * Neither the name of the NVIDIA CORPORATION nor the
   *       names of its contributors may be used to endorse or promote products
   *       derived from this software without specific prior written permission.
   *
   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
   * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
   * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
   * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
   * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
   * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
   *
   ******************************************************************************/
  
  /**
   * \file
   * cub::AgentReduce implements a stateful abstraction of CUDA thread blocks for participating in device-wide reduction .
   */
  
  #pragma once
  
  #include <iterator>
  
  #include "../block/block_load.cuh"
  #include "../block/block_reduce.cuh"
  #include "../grid/grid_mapping.cuh"
  #include "../grid/grid_even_share.cuh"
  #include "../util_type.cuh"
  #include "../iterator/cache_modified_input_iterator.cuh"
  #include "../util_namespace.cuh"
  
  
  /// Optional outer namespace(s)
  CUB_NS_PREFIX
  
  /// CUB namespace
  namespace cub {
  
  
  /******************************************************************************
   * Tuning policy types
   ******************************************************************************/
  
  /**
   * Parameterizable tuning policy type for AgentReduce
   */
  template <
      int                     _BLOCK_THREADS,         ///< Threads per thread block
      int                     _ITEMS_PER_THREAD,      ///< Items per thread (per tile of input)
      int                     _VECTOR_LOAD_LENGTH,    ///< Number of items per vectorized load
      BlockReduceAlgorithm    _BLOCK_ALGORITHM,       ///< Cooperative block-wide reduction algorithm to use
      CacheLoadModifier       _LOAD_MODIFIER>         ///< Cache load modifier for reading input elements
  struct AgentReducePolicy
  {
      enum
      {
          BLOCK_THREADS       = _BLOCK_THREADS,       ///< Threads per thread block
          ITEMS_PER_THREAD    = _ITEMS_PER_THREAD,    ///< Items per thread (per tile of input)
          VECTOR_LOAD_LENGTH  = _VECTOR_LOAD_LENGTH,  ///< Number of items per vectorized load
      };
  
      static const BlockReduceAlgorithm  BLOCK_ALGORITHM      = _BLOCK_ALGORITHM;     ///< Cooperative block-wide reduction algorithm to use
      static const CacheLoadModifier     LOAD_MODIFIER        = _LOAD_MODIFIER;       ///< Cache load modifier for reading input elements
  };
  
  
  
  /******************************************************************************
   * Thread block abstractions
   ******************************************************************************/
  
  /**
   * \brief AgentReduce implements a stateful abstraction of CUDA thread blocks for participating in device-wide reduction .
   *
   * Each thread reduces only the values it loads. If \p FIRST_TILE, this
   * partial reduction is stored into \p thread_aggregate.  Otherwise it is
   * accumulated into \p thread_aggregate.
   */
  template <
      typename AgentReducePolicy,        ///< Parameterized AgentReducePolicy tuning policy type
      typename InputIteratorT,           ///< Random-access iterator type for input
      typename OutputIteratorT,          ///< Random-access iterator type for output
      typename OffsetT,                  ///< Signed integer type for global offsets
      typename ReductionOp>              ///< Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
  struct AgentReduce
  {
  
      //---------------------------------------------------------------------
      // Types and constants
      //---------------------------------------------------------------------
  
      /// The input value type
      typedef typename std::iterator_traits<InputIteratorT>::value_type InputT;
  
      /// The output value type
      typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE),  // OutputT =  (if output iterator's value type is void) ?
          typename std::iterator_traits<InputIteratorT>::value_type,                                          // ... then the input iterator's value type,
          typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputT;                          // ... else the output iterator's value type
  
      /// Vector type of InputT for data movement
      typedef typename CubVector<InputT, AgentReducePolicy::VECTOR_LOAD_LENGTH>::Type VectorT;
  
      /// Input iterator wrapper type (for applying cache modifier)
      typedef typename If<IsPointer<InputIteratorT>::VALUE,
              CacheModifiedInputIterator<AgentReducePolicy::LOAD_MODIFIER, InputT, OffsetT>,      // Wrap the native input pointer with CacheModifiedInputIterator
              InputIteratorT>::Type                                                               // Directly use the supplied input iterator type
          WrappedInputIteratorT;
  
      /// Constants
      enum
      {
          BLOCK_THREADS       = AgentReducePolicy::BLOCK_THREADS,
          ITEMS_PER_THREAD    = AgentReducePolicy::ITEMS_PER_THREAD,
          VECTOR_LOAD_LENGTH  = CUB_MIN(ITEMS_PER_THREAD, AgentReducePolicy::VECTOR_LOAD_LENGTH),
          TILE_ITEMS          = BLOCK_THREADS * ITEMS_PER_THREAD,
  
          // Can vectorize according to the policy if the input iterator is a native pointer to a primitive type
          ATTEMPT_VECTORIZATION   = (VECTOR_LOAD_LENGTH > 1) &&
                                      (ITEMS_PER_THREAD % VECTOR_LOAD_LENGTH == 0) &&
                                      (IsPointer<InputIteratorT>::VALUE) && Traits<InputT>::PRIMITIVE,
  
      };
  
      static const CacheLoadModifier    LOAD_MODIFIER   = AgentReducePolicy::LOAD_MODIFIER;
      static const BlockReduceAlgorithm BLOCK_ALGORITHM = AgentReducePolicy::BLOCK_ALGORITHM;
  
      /// Parameterized BlockReduce primitive
      typedef BlockReduce<OutputT, BLOCK_THREADS, AgentReducePolicy::BLOCK_ALGORITHM> BlockReduceT;
  
      /// Shared memory type required by this thread block
      struct _TempStorage
      {
          typename BlockReduceT::TempStorage  reduce;
      };
  
      /// Alias wrapper allowing storage to be unioned
      struct TempStorage : Uninitialized<_TempStorage> {};
  
  
      //---------------------------------------------------------------------
      // Per-thread fields
      //---------------------------------------------------------------------
  
      _TempStorage&           temp_storage;       ///< Reference to temp_storage
      InputIteratorT          d_in;               ///< Input data to reduce
      WrappedInputIteratorT   d_wrapped_in;       ///< Wrapped input data to reduce
      ReductionOp             reduction_op;       ///< Binary reduction operator
  
  
      //---------------------------------------------------------------------
      // Utility
      //---------------------------------------------------------------------
  
  
      // Whether or not the input is aligned with the vector type (specialized for types we can vectorize)
      template <typename Iterator>
      static __device__ __forceinline__ bool IsAligned(
          Iterator        d_in,
          Int2Type<true>  /*can_vectorize*/)
      {
          return (size_t(d_in) & (sizeof(VectorT) - 1)) == 0;
      }
  
      // Whether or not the input is aligned with the vector type (specialized for types we cannot vectorize)
      template <typename Iterator>
      static __device__ __forceinline__ bool IsAligned(
          Iterator        /*d_in*/,
          Int2Type<false> /*can_vectorize*/)
      {
          return false;
      }
  
  
      //---------------------------------------------------------------------
      // Constructor
      //---------------------------------------------------------------------
  
      /**
       * Constructor
       */
      __device__ __forceinline__ AgentReduce(
          TempStorage&            temp_storage,       ///< Reference to temp_storage
          InputIteratorT          d_in,               ///< Input data to reduce
          ReductionOp             reduction_op)       ///< Binary reduction operator
      :
          temp_storage(temp_storage.Alias()),
          d_in(d_in),
          d_wrapped_in(d_in),
          reduction_op(reduction_op)
      {}
  
  
      //---------------------------------------------------------------------
      // Tile consumption
      //---------------------------------------------------------------------
  
      /**
       * Consume a full tile of input (non-vectorized)
       */
      template <int IS_FIRST_TILE>
      __device__ __forceinline__ void ConsumeTile(
          OutputT                 &thread_aggregate,
          OffsetT                 block_offset,       ///< The offset the tile to consume
          int                     /*valid_items*/,    ///< The number of valid items in the tile
          Int2Type<true>          /*is_full_tile*/,   ///< Whether or not this is a full tile
          Int2Type<false>         /*can_vectorize*/)  ///< Whether or not we can vectorize loads
      {
          OutputT items[ITEMS_PER_THREAD];
  
          // Load items in striped fashion
          LoadDirectStriped<BLOCK_THREADS>(threadIdx.x, d_wrapped_in + block_offset, items);
  
          // Reduce items within each thread stripe
          thread_aggregate = (IS_FIRST_TILE) ?
              internal::ThreadReduce(items, reduction_op) :
              internal::ThreadReduce(items, reduction_op, thread_aggregate);
      }
  
  
      /**
       * Consume a full tile of input (vectorized)
       */
      template <int IS_FIRST_TILE>
      __device__ __forceinline__ void ConsumeTile(
          OutputT                 &thread_aggregate,
          OffsetT                 block_offset,       ///< The offset the tile to consume
          int                     /*valid_items*/,    ///< The number of valid items in the tile
          Int2Type<true>          /*is_full_tile*/,   ///< Whether or not this is a full tile
          Int2Type<true>          /*can_vectorize*/)  ///< Whether or not we can vectorize loads
      {
          // Alias items as an array of VectorT and load it in striped fashion
          enum { WORDS =  ITEMS_PER_THREAD / VECTOR_LOAD_LENGTH };
  
          // Fabricate a vectorized input iterator
          InputT *d_in_unqualified = const_cast<InputT*>(d_in) + block_offset + (threadIdx.x * VECTOR_LOAD_LENGTH);
          CacheModifiedInputIterator<AgentReducePolicy::LOAD_MODIFIER, VectorT, OffsetT> d_vec_in(
              reinterpret_cast<VectorT*>(d_in_unqualified));
  
          // Load items as vector items
          InputT input_items[ITEMS_PER_THREAD];
          VectorT *vec_items = reinterpret_cast<VectorT*>(input_items);
          #pragma unroll
          for (int i = 0; i < WORDS; ++i)
              vec_items[i] = d_vec_in[BLOCK_THREADS * i];
  
          // Convert from input type to output type
          OutputT items[ITEMS_PER_THREAD];
          #pragma unroll
          for (int i = 0; i < ITEMS_PER_THREAD; ++i)
              items[i] = input_items[i];
  
          // Reduce items within each thread stripe
          thread_aggregate = (IS_FIRST_TILE) ?
              internal::ThreadReduce(items, reduction_op) :
              internal::ThreadReduce(items, reduction_op, thread_aggregate);
      }
  
  
      /**
       * Consume a partial tile of input
       */
      template <int IS_FIRST_TILE, int CAN_VECTORIZE>
      __device__ __forceinline__ void ConsumeTile(
          OutputT                 &thread_aggregate,
          OffsetT                 block_offset,       ///< The offset the tile to consume
          int                     valid_items,        ///< The number of valid items in the tile
          Int2Type<false>         /*is_full_tile*/,   ///< Whether or not this is a full tile
          Int2Type<CAN_VECTORIZE> /*can_vectorize*/)  ///< Whether or not we can vectorize loads
      {
          // Partial tile
          int thread_offset = threadIdx.x;
  
          // Read first item
          if ((IS_FIRST_TILE) && (thread_offset < valid_items))
          {
              thread_aggregate = d_wrapped_in[block_offset + thread_offset];
              thread_offset += BLOCK_THREADS;
          }
  
          // Continue reading items (block-striped)
          while (thread_offset < valid_items)
          {
              OutputT item        = d_wrapped_in[block_offset + thread_offset];
              thread_aggregate    = reduction_op(thread_aggregate, item);
              thread_offset       += BLOCK_THREADS;
          }
      }
  
  
      //---------------------------------------------------------------
      // Consume a contiguous segment of tiles
      //---------------------------------------------------------------------
  
      /**
       * \brief Reduce a contiguous segment of input tiles
       */
      template <int CAN_VECTORIZE>
      __device__ __forceinline__ OutputT ConsumeRange(
          GridEvenShare<OffsetT> &even_share,          ///< GridEvenShare descriptor
          Int2Type<CAN_VECTORIZE> can_vectorize)      ///< Whether or not we can vectorize loads
      {
          OutputT thread_aggregate;
  
          if (even_share.block_offset + TILE_ITEMS > even_share.block_end)
          {
              // First tile isn't full (not all threads have valid items)
              int valid_items = even_share.block_end - even_share.block_offset;
              ConsumeTile<true>(thread_aggregate, even_share.block_offset, valid_items, Int2Type<false>(), can_vectorize);
              return BlockReduceT(temp_storage.reduce).Reduce(thread_aggregate, reduction_op, valid_items);
          }
  
          // At least one full block
          ConsumeTile<true>(thread_aggregate, even_share.block_offset, TILE_ITEMS, Int2Type<true>(), can_vectorize);
          even_share.block_offset += even_share.block_stride;
  
          // Consume subsequent full tiles of input
          while (even_share.block_offset + TILE_ITEMS <= even_share.block_end)
          {
              ConsumeTile<false>(thread_aggregate, even_share.block_offset, TILE_ITEMS, Int2Type<true>(), can_vectorize);
              even_share.block_offset += even_share.block_stride;
          }
  
          // Consume a partially-full tile
          if (even_share.block_offset < even_share.block_end)
          {
              int valid_items = even_share.block_end - even_share.block_offset;
              ConsumeTile<false>(thread_aggregate, even_share.block_offset, valid_items, Int2Type<false>(), can_vectorize);
          }
  
          // Compute block-wide reduction (all threads have valid items)
          return BlockReduceT(temp_storage.reduce).Reduce(thread_aggregate, reduction_op);
      }
  
  
      /**
       * \brief Reduce a contiguous segment of input tiles
       */
      __device__ __forceinline__ OutputT ConsumeRange(
          OffsetT block_offset,                       ///< [in] Threadblock begin offset (inclusive)
          OffsetT block_end)                          ///< [in] Threadblock end offset (exclusive)
      {
          GridEvenShare<OffsetT> even_share;
          even_share.template BlockInit<TILE_ITEMS>(block_offset, block_end);
  
          return (IsAligned(d_in + block_offset, Int2Type<ATTEMPT_VECTORIZATION>())) ?
              ConsumeRange(even_share, Int2Type<true && ATTEMPT_VECTORIZATION>()) :
              ConsumeRange(even_share, Int2Type<false && ATTEMPT_VECTORIZATION>());
      }
  
  
      /**
       * Reduce a contiguous segment of input tiles
       */
      __device__ __forceinline__ OutputT ConsumeTiles(
          GridEvenShare<OffsetT> &even_share)        ///< [in] GridEvenShare descriptor
      {
          // Initialize GRID_MAPPING_STRIP_MINE even-share descriptor for this thread block
          even_share.template BlockInit<TILE_ITEMS, GRID_MAPPING_STRIP_MINE>();
  
          return (IsAligned(d_in, Int2Type<ATTEMPT_VECTORIZATION>())) ?
              ConsumeRange(even_share, Int2Type<true && ATTEMPT_VECTORIZATION>()) :
              ConsumeRange(even_share, Int2Type<false && ATTEMPT_VECTORIZATION>());
  
      }
  
  };
  
  
  }               // CUB namespace
  CUB_NS_POSTFIX  // Optional outer namespace(s)