agent_reduce.cuh 16.5 KB
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/**
 * \file
 * cub::AgentReduce implements a stateful abstraction of CUDA thread blocks for participating in device-wide reduction .
 */

#pragma once

#include <iterator>

#include "../block/block_load.cuh"
#include "../block/block_reduce.cuh"
#include "../grid/grid_mapping.cuh"
#include "../grid/grid_even_share.cuh"
#include "../util_type.cuh"
#include "../iterator/cache_modified_input_iterator.cuh"
#include "../util_namespace.cuh"


/// Optional outer namespace(s)
CUB_NS_PREFIX

/// CUB namespace
namespace cub {


/******************************************************************************
 * Tuning policy types
 ******************************************************************************/

/**
 * Parameterizable tuning policy type for AgentReduce
 */
template <
    int                     _BLOCK_THREADS,         ///< Threads per thread block
    int                     _ITEMS_PER_THREAD,      ///< Items per thread (per tile of input)
    int                     _VECTOR_LOAD_LENGTH,    ///< Number of items per vectorized load
    BlockReduceAlgorithm    _BLOCK_ALGORITHM,       ///< Cooperative block-wide reduction algorithm to use
    CacheLoadModifier       _LOAD_MODIFIER>         ///< Cache load modifier for reading input elements
struct AgentReducePolicy
{
    enum
    {
        BLOCK_THREADS       = _BLOCK_THREADS,       ///< Threads per thread block
        ITEMS_PER_THREAD    = _ITEMS_PER_THREAD,    ///< Items per thread (per tile of input)
        VECTOR_LOAD_LENGTH  = _VECTOR_LOAD_LENGTH,  ///< Number of items per vectorized load
    };

    static const BlockReduceAlgorithm  BLOCK_ALGORITHM      = _BLOCK_ALGORITHM;     ///< Cooperative block-wide reduction algorithm to use
    static const CacheLoadModifier     LOAD_MODIFIER        = _LOAD_MODIFIER;       ///< Cache load modifier for reading input elements
};



/******************************************************************************
 * Thread block abstractions
 ******************************************************************************/

/**
 * \brief AgentReduce implements a stateful abstraction of CUDA thread blocks for participating in device-wide reduction .
 *
 * Each thread reduces only the values it loads. If \p FIRST_TILE, this
 * partial reduction is stored into \p thread_aggregate.  Otherwise it is
 * accumulated into \p thread_aggregate.
 */
template <
    typename AgentReducePolicy,        ///< Parameterized AgentReducePolicy tuning policy type
    typename InputIteratorT,           ///< Random-access iterator type for input
    typename OutputIteratorT,          ///< Random-access iterator type for output
    typename OffsetT,                  ///< Signed integer type for global offsets
    typename ReductionOp>              ///< Binary reduction operator type having member <tt>T operator()(const T &a, const T &b)</tt>
struct AgentReduce
{

    //---------------------------------------------------------------------
    // Types and constants
    //---------------------------------------------------------------------

    /// The input value type
    typedef typename std::iterator_traits<InputIteratorT>::value_type InputT;

    /// The output value type
    typedef typename If<(Equals<typename std::iterator_traits<OutputIteratorT>::value_type, void>::VALUE),  // OutputT =  (if output iterator's value type is void) ?
        typename std::iterator_traits<InputIteratorT>::value_type,                                          // ... then the input iterator's value type,
        typename std::iterator_traits<OutputIteratorT>::value_type>::Type OutputT;                          // ... else the output iterator's value type

    /// Vector type of InputT for data movement
    typedef typename CubVector<InputT, AgentReducePolicy::VECTOR_LOAD_LENGTH>::Type VectorT;

    /// Input iterator wrapper type (for applying cache modifier)
    typedef typename If<IsPointer<InputIteratorT>::VALUE,
            CacheModifiedInputIterator<AgentReducePolicy::LOAD_MODIFIER, InputT, OffsetT>,      // Wrap the native input pointer with CacheModifiedInputIterator
            InputIteratorT>::Type                                                               // Directly use the supplied input iterator type
        WrappedInputIteratorT;

    /// Constants
    enum
    {
        BLOCK_THREADS       = AgentReducePolicy::BLOCK_THREADS,
        ITEMS_PER_THREAD    = AgentReducePolicy::ITEMS_PER_THREAD,
        VECTOR_LOAD_LENGTH  = CUB_MIN(ITEMS_PER_THREAD, AgentReducePolicy::VECTOR_LOAD_LENGTH),
        TILE_ITEMS          = BLOCK_THREADS * ITEMS_PER_THREAD,

        // Can vectorize according to the policy if the input iterator is a native pointer to a primitive type
        ATTEMPT_VECTORIZATION   = (VECTOR_LOAD_LENGTH > 1) &&
                                    (ITEMS_PER_THREAD % VECTOR_LOAD_LENGTH == 0) &&
                                    (IsPointer<InputIteratorT>::VALUE) && Traits<InputT>::PRIMITIVE,

    };

    static const CacheLoadModifier    LOAD_MODIFIER   = AgentReducePolicy::LOAD_MODIFIER;
    static const BlockReduceAlgorithm BLOCK_ALGORITHM = AgentReducePolicy::BLOCK_ALGORITHM;

    /// Parameterized BlockReduce primitive
    typedef BlockReduce<OutputT, BLOCK_THREADS, AgentReducePolicy::BLOCK_ALGORITHM> BlockReduceT;

    /// Shared memory type required by this thread block
    struct _TempStorage
    {
        typename BlockReduceT::TempStorage  reduce;
    };

    /// Alias wrapper allowing storage to be unioned
    struct TempStorage : Uninitialized<_TempStorage> {};


    //---------------------------------------------------------------------
    // Per-thread fields
    //---------------------------------------------------------------------

    _TempStorage&           temp_storage;       ///< Reference to temp_storage
    InputIteratorT          d_in;               ///< Input data to reduce
    WrappedInputIteratorT   d_wrapped_in;       ///< Wrapped input data to reduce
    ReductionOp             reduction_op;       ///< Binary reduction operator


    //---------------------------------------------------------------------
    // Utility
    //---------------------------------------------------------------------


    // Whether or not the input is aligned with the vector type (specialized for types we can vectorize)
    template <typename Iterator>
    static __device__ __forceinline__ bool IsAligned(
        Iterator        d_in,
        Int2Type<true>  /*can_vectorize*/)
    {
        return (size_t(d_in) & (sizeof(VectorT) - 1)) == 0;
    }

    // Whether or not the input is aligned with the vector type (specialized for types we cannot vectorize)
    template <typename Iterator>
    static __device__ __forceinline__ bool IsAligned(
        Iterator        /*d_in*/,
        Int2Type<false> /*can_vectorize*/)
    {
        return false;
    }


    //---------------------------------------------------------------------
    // Constructor
    //---------------------------------------------------------------------

    /**
     * Constructor
     */
    __device__ __forceinline__ AgentReduce(
        TempStorage&            temp_storage,       ///< Reference to temp_storage
        InputIteratorT          d_in,               ///< Input data to reduce
        ReductionOp             reduction_op)       ///< Binary reduction operator
    :
        temp_storage(temp_storage.Alias()),
        d_in(d_in),
        d_wrapped_in(d_in),
        reduction_op(reduction_op)
    {}


    //---------------------------------------------------------------------
    // Tile consumption
    //---------------------------------------------------------------------

    /**
     * Consume a full tile of input (non-vectorized)
     */
    template <int IS_FIRST_TILE>
    __device__ __forceinline__ void ConsumeTile(
        OutputT                 &thread_aggregate,
        OffsetT                 block_offset,       ///< The offset the tile to consume
        int                     /*valid_items*/,    ///< The number of valid items in the tile
        Int2Type<true>          /*is_full_tile*/,   ///< Whether or not this is a full tile
        Int2Type<false>         /*can_vectorize*/)  ///< Whether or not we can vectorize loads
    {
        OutputT items[ITEMS_PER_THREAD];

        // Load items in striped fashion
        LoadDirectStriped<BLOCK_THREADS>(threadIdx.x, d_wrapped_in + block_offset, items);

        // Reduce items within each thread stripe
        thread_aggregate = (IS_FIRST_TILE) ?
            internal::ThreadReduce(items, reduction_op) :
            internal::ThreadReduce(items, reduction_op, thread_aggregate);
    }


    /**
     * Consume a full tile of input (vectorized)
     */
    template <int IS_FIRST_TILE>
    __device__ __forceinline__ void ConsumeTile(
        OutputT                 &thread_aggregate,
        OffsetT                 block_offset,       ///< The offset the tile to consume
        int                     /*valid_items*/,    ///< The number of valid items in the tile
        Int2Type<true>          /*is_full_tile*/,   ///< Whether or not this is a full tile
        Int2Type<true>          /*can_vectorize*/)  ///< Whether or not we can vectorize loads
    {
        // Alias items as an array of VectorT and load it in striped fashion
        enum { WORDS =  ITEMS_PER_THREAD / VECTOR_LOAD_LENGTH };

        // Fabricate a vectorized input iterator
        InputT *d_in_unqualified = const_cast<InputT*>(d_in) + block_offset + (threadIdx.x * VECTOR_LOAD_LENGTH);
        CacheModifiedInputIterator<AgentReducePolicy::LOAD_MODIFIER, VectorT, OffsetT> d_vec_in(
            reinterpret_cast<VectorT*>(d_in_unqualified));

        // Load items as vector items
        InputT input_items[ITEMS_PER_THREAD];
        VectorT *vec_items = reinterpret_cast<VectorT*>(input_items);
        #pragma unroll
        for (int i = 0; i < WORDS; ++i)
            vec_items[i] = d_vec_in[BLOCK_THREADS * i];

        // Convert from input type to output type
        OutputT items[ITEMS_PER_THREAD];
        #pragma unroll
        for (int i = 0; i < ITEMS_PER_THREAD; ++i)
            items[i] = input_items[i];

        // Reduce items within each thread stripe
        thread_aggregate = (IS_FIRST_TILE) ?
            internal::ThreadReduce(items, reduction_op) :
            internal::ThreadReduce(items, reduction_op, thread_aggregate);
    }


    /**
     * Consume a partial tile of input
     */
    template <int IS_FIRST_TILE, int CAN_VECTORIZE>
    __device__ __forceinline__ void ConsumeTile(
        OutputT                 &thread_aggregate,
        OffsetT                 block_offset,       ///< The offset the tile to consume
        int                     valid_items,        ///< The number of valid items in the tile
        Int2Type<false>         /*is_full_tile*/,   ///< Whether or not this is a full tile
        Int2Type<CAN_VECTORIZE> /*can_vectorize*/)  ///< Whether or not we can vectorize loads
    {
        // Partial tile
        int thread_offset = threadIdx.x;

        // Read first item
        if ((IS_FIRST_TILE) && (thread_offset < valid_items))
        {
            thread_aggregate = d_wrapped_in[block_offset + thread_offset];
            thread_offset += BLOCK_THREADS;
        }

        // Continue reading items (block-striped)
        while (thread_offset < valid_items)
        {
            OutputT item        = d_wrapped_in[block_offset + thread_offset];
            thread_aggregate    = reduction_op(thread_aggregate, item);
            thread_offset       += BLOCK_THREADS;
        }
    }


    //---------------------------------------------------------------
    // Consume a contiguous segment of tiles
    //---------------------------------------------------------------------

    /**
     * \brief Reduce a contiguous segment of input tiles
     */
    template <int CAN_VECTORIZE>
    __device__ __forceinline__ OutputT ConsumeRange(
        GridEvenShare<OffsetT> &even_share,          ///< GridEvenShare descriptor
        Int2Type<CAN_VECTORIZE> can_vectorize)      ///< Whether or not we can vectorize loads
    {
        OutputT thread_aggregate;

        if (even_share.block_offset + TILE_ITEMS > even_share.block_end)
        {
            // First tile isn't full (not all threads have valid items)
            int valid_items = even_share.block_end - even_share.block_offset;
            ConsumeTile<true>(thread_aggregate, even_share.block_offset, valid_items, Int2Type<false>(), can_vectorize);
            return BlockReduceT(temp_storage.reduce).Reduce(thread_aggregate, reduction_op, valid_items);
        }

        // At least one full block
        ConsumeTile<true>(thread_aggregate, even_share.block_offset, TILE_ITEMS, Int2Type<true>(), can_vectorize);
        even_share.block_offset += even_share.block_stride;

        // Consume subsequent full tiles of input
        while (even_share.block_offset + TILE_ITEMS <= even_share.block_end)
        {
            ConsumeTile<false>(thread_aggregate, even_share.block_offset, TILE_ITEMS, Int2Type<true>(), can_vectorize);
            even_share.block_offset += even_share.block_stride;
        }

        // Consume a partially-full tile
        if (even_share.block_offset < even_share.block_end)
        {
            int valid_items = even_share.block_end - even_share.block_offset;
            ConsumeTile<false>(thread_aggregate, even_share.block_offset, valid_items, Int2Type<false>(), can_vectorize);
        }

        // Compute block-wide reduction (all threads have valid items)
        return BlockReduceT(temp_storage.reduce).Reduce(thread_aggregate, reduction_op);
    }


    /**
     * \brief Reduce a contiguous segment of input tiles
     */
    __device__ __forceinline__ OutputT ConsumeRange(
        OffsetT block_offset,                       ///< [in] Threadblock begin offset (inclusive)
        OffsetT block_end)                          ///< [in] Threadblock end offset (exclusive)
    {
        GridEvenShare<OffsetT> even_share;
        even_share.template BlockInit<TILE_ITEMS>(block_offset, block_end);

        return (IsAligned(d_in + block_offset, Int2Type<ATTEMPT_VECTORIZATION>())) ?
            ConsumeRange(even_share, Int2Type<true && ATTEMPT_VECTORIZATION>()) :
            ConsumeRange(even_share, Int2Type<false && ATTEMPT_VECTORIZATION>());
    }


    /**
     * Reduce a contiguous segment of input tiles
     */
    __device__ __forceinline__ OutputT ConsumeTiles(
        GridEvenShare<OffsetT> &even_share)        ///< [in] GridEvenShare descriptor
    {
        // Initialize GRID_MAPPING_STRIP_MINE even-share descriptor for this thread block
        even_share.template BlockInit<TILE_ITEMS, GRID_MAPPING_STRIP_MINE>();

        return (IsAligned(d_in, Int2Type<ATTEMPT_VECTORIZATION>())) ?
            ConsumeRange(even_share, Int2Type<true && ATTEMPT_VECTORIZATION>()) :
            ConsumeRange(even_share, Int2Type<false && ATTEMPT_VECTORIZATION>());

    }

};


}               // CUB namespace
CUB_NS_POSTFIX  // Optional outer namespace(s)