Blame view
tools/cub-1.8.0/cub/agent/agent_segment_fixup.cuh
16.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /** * \file * cub::AgentSegmentFixup implements a stateful abstraction of CUDA thread blocks for participating in device-wide reduce-value-by-key. */ #pragma once #include <iterator> #include "single_pass_scan_operators.cuh" #include "../block/block_load.cuh" #include "../block/block_store.cuh" #include "../block/block_scan.cuh" #include "../block/block_discontinuity.cuh" #include "../iterator/cache_modified_input_iterator.cuh" #include "../iterator/constant_input_iterator.cuh" #include "../util_namespace.cuh" /// Optional outer namespace(s) CUB_NS_PREFIX /// CUB namespace namespace cub { /****************************************************************************** * Tuning policy types ******************************************************************************/ /** * Parameterizable tuning policy type for AgentSegmentFixup */ template < int _BLOCK_THREADS, ///< Threads per thread block int _ITEMS_PER_THREAD, ///< Items per thread (per tile of input) BlockLoadAlgorithm _LOAD_ALGORITHM, ///< The BlockLoad algorithm to use CacheLoadModifier _LOAD_MODIFIER, ///< Cache load modifier for reading input elements BlockScanAlgorithm _SCAN_ALGORITHM> ///< The BlockScan algorithm to use struct AgentSegmentFixupPolicy { enum { BLOCK_THREADS = _BLOCK_THREADS, ///< Threads per thread block ITEMS_PER_THREAD = _ITEMS_PER_THREAD, ///< Items per thread (per tile of input) }; static const BlockLoadAlgorithm LOAD_ALGORITHM = _LOAD_ALGORITHM; ///< The BlockLoad algorithm to use static const CacheLoadModifier LOAD_MODIFIER = _LOAD_MODIFIER; ///< Cache load modifier for reading input elements static const BlockScanAlgorithm SCAN_ALGORITHM = _SCAN_ALGORITHM; ///< The BlockScan algorithm to use }; /****************************************************************************** * Thread block abstractions ******************************************************************************/ /** * \brief AgentSegmentFixup implements a stateful abstraction of CUDA thread blocks for participating in device-wide reduce-value-by-key */ template < typename AgentSegmentFixupPolicyT, ///< Parameterized AgentSegmentFixupPolicy tuning policy type typename PairsInputIteratorT, ///< Random-access input iterator type for keys typename AggregatesOutputIteratorT, ///< Random-access output iterator type for values typename EqualityOpT, ///< KeyT equality operator type typename ReductionOpT, ///< ValueT reduction operator type typename OffsetT> ///< Signed integer type for global offsets struct AgentSegmentFixup { //--------------------------------------------------------------------- // Types and constants //--------------------------------------------------------------------- // Data type of key-value input iterator typedef typename std::iterator_traits<PairsInputIteratorT>::value_type KeyValuePairT; // Value type typedef typename KeyValuePairT::Value ValueT; // Tile status descriptor interface type typedef ReduceByKeyScanTileState<ValueT, OffsetT> ScanTileStateT; // Constants enum { BLOCK_THREADS = AgentSegmentFixupPolicyT::BLOCK_THREADS, ITEMS_PER_THREAD = AgentSegmentFixupPolicyT::ITEMS_PER_THREAD, TILE_ITEMS = BLOCK_THREADS * ITEMS_PER_THREAD, // Whether or not do fixup using RLE + global atomics USE_ATOMIC_FIXUP = (CUB_PTX_ARCH >= 350) && (Equals<ValueT, float>::VALUE || Equals<ValueT, int>::VALUE || Equals<ValueT, unsigned int>::VALUE || Equals<ValueT, unsigned long long>::VALUE), // Whether or not the scan operation has a zero-valued identity value (true if we're performing addition on a primitive type) HAS_IDENTITY_ZERO = (Equals<ReductionOpT, cub::Sum>::VALUE) && (Traits<ValueT>::PRIMITIVE), }; // Cache-modified Input iterator wrapper type (for applying cache modifier) for keys typedef typename If<IsPointer<PairsInputIteratorT>::VALUE, CacheModifiedInputIterator<AgentSegmentFixupPolicyT::LOAD_MODIFIER, KeyValuePairT, OffsetT>, // Wrap the native input pointer with CacheModifiedValuesInputIterator PairsInputIteratorT>::Type // Directly use the supplied input iterator type WrappedPairsInputIteratorT; // Cache-modified Input iterator wrapper type (for applying cache modifier) for fixup values typedef typename If<IsPointer<AggregatesOutputIteratorT>::VALUE, CacheModifiedInputIterator<AgentSegmentFixupPolicyT::LOAD_MODIFIER, ValueT, OffsetT>, // Wrap the native input pointer with CacheModifiedValuesInputIterator AggregatesOutputIteratorT>::Type // Directly use the supplied input iterator type WrappedFixupInputIteratorT; // Reduce-value-by-segment scan operator typedef ReduceByKeyOp<cub::Sum> ReduceBySegmentOpT; // Parameterized BlockLoad type for pairs typedef BlockLoad< KeyValuePairT, BLOCK_THREADS, ITEMS_PER_THREAD, AgentSegmentFixupPolicyT::LOAD_ALGORITHM> BlockLoadPairs; // Parameterized BlockScan type typedef BlockScan< KeyValuePairT, BLOCK_THREADS, AgentSegmentFixupPolicyT::SCAN_ALGORITHM> BlockScanT; // Callback type for obtaining tile prefix during block scan typedef TilePrefixCallbackOp< KeyValuePairT, ReduceBySegmentOpT, ScanTileStateT> TilePrefixCallbackOpT; // Shared memory type for this thread block union _TempStorage { struct { typename BlockScanT::TempStorage scan; // Smem needed for tile scanning typename TilePrefixCallbackOpT::TempStorage prefix; // Smem needed for cooperative prefix callback }; // Smem needed for loading keys typename BlockLoadPairs::TempStorage load_pairs; }; // Alias wrapper allowing storage to be unioned struct TempStorage : Uninitialized<_TempStorage> {}; //--------------------------------------------------------------------- // Per-thread fields //--------------------------------------------------------------------- _TempStorage& temp_storage; ///< Reference to temp_storage WrappedPairsInputIteratorT d_pairs_in; ///< Input keys AggregatesOutputIteratorT d_aggregates_out; ///< Output value aggregates WrappedFixupInputIteratorT d_fixup_in; ///< Fixup input values InequalityWrapper<EqualityOpT> inequality_op; ///< KeyT inequality operator ReductionOpT reduction_op; ///< Reduction operator ReduceBySegmentOpT scan_op; ///< Reduce-by-segment scan operator //--------------------------------------------------------------------- // Constructor //--------------------------------------------------------------------- // Constructor __device__ __forceinline__ AgentSegmentFixup( TempStorage& temp_storage, ///< Reference to temp_storage PairsInputIteratorT d_pairs_in, ///< Input keys AggregatesOutputIteratorT d_aggregates_out, ///< Output value aggregates EqualityOpT equality_op, ///< KeyT equality operator ReductionOpT reduction_op) ///< ValueT reduction operator : temp_storage(temp_storage.Alias()), d_pairs_in(d_pairs_in), d_aggregates_out(d_aggregates_out), d_fixup_in(d_aggregates_out), inequality_op(equality_op), reduction_op(reduction_op), scan_op(reduction_op) {} //--------------------------------------------------------------------- // Cooperatively scan a device-wide sequence of tiles with other CTAs //--------------------------------------------------------------------- /** * Process input tile. Specialized for atomic-fixup */ template <bool IS_LAST_TILE> __device__ __forceinline__ void ConsumeTile( OffsetT num_remaining, ///< Number of global input items remaining (including this tile) int tile_idx, ///< Tile index OffsetT tile_offset, ///< Tile offset ScanTileStateT& tile_state, ///< Global tile state descriptor Int2Type<true> use_atomic_fixup) ///< Marker whether to use atomicAdd (instead of reduce-by-key) { KeyValuePairT pairs[ITEMS_PER_THREAD]; // Load pairs KeyValuePairT oob_pair; oob_pair.key = -1; if (IS_LAST_TILE) BlockLoadPairs(temp_storage.load_pairs).Load(d_pairs_in + tile_offset, pairs, num_remaining, oob_pair); else BlockLoadPairs(temp_storage.load_pairs).Load(d_pairs_in + tile_offset, pairs); // RLE #pragma unroll for (int ITEM = 1; ITEM < ITEMS_PER_THREAD; ++ITEM) { ValueT* d_scatter = d_aggregates_out + pairs[ITEM - 1].key; if (pairs[ITEM].key != pairs[ITEM - 1].key) atomicAdd(d_scatter, pairs[ITEM - 1].value); else pairs[ITEM].value = reduction_op(pairs[ITEM - 1].value, pairs[ITEM].value); } // Flush last item if valid ValueT* d_scatter = d_aggregates_out + pairs[ITEMS_PER_THREAD - 1].key; if ((!IS_LAST_TILE) || (pairs[ITEMS_PER_THREAD - 1].key >= 0)) atomicAdd(d_scatter, pairs[ITEMS_PER_THREAD - 1].value); } /** * Process input tile. Specialized for reduce-by-key fixup */ template <bool IS_LAST_TILE> __device__ __forceinline__ void ConsumeTile( OffsetT num_remaining, ///< Number of global input items remaining (including this tile) int tile_idx, ///< Tile index OffsetT tile_offset, ///< Tile offset ScanTileStateT& tile_state, ///< Global tile state descriptor Int2Type<false> use_atomic_fixup) ///< Marker whether to use atomicAdd (instead of reduce-by-key) { KeyValuePairT pairs[ITEMS_PER_THREAD]; KeyValuePairT scatter_pairs[ITEMS_PER_THREAD]; // Load pairs KeyValuePairT oob_pair; oob_pair.key = -1; if (IS_LAST_TILE) BlockLoadPairs(temp_storage.load_pairs).Load(d_pairs_in + tile_offset, pairs, num_remaining, oob_pair); else BlockLoadPairs(temp_storage.load_pairs).Load(d_pairs_in + tile_offset, pairs); CTA_SYNC(); KeyValuePairT tile_aggregate; if (tile_idx == 0) { // Exclusive scan of values and segment_flags BlockScanT(temp_storage.scan).ExclusiveScan(pairs, scatter_pairs, scan_op, tile_aggregate); // Update tile status if this is not the last tile if (threadIdx.x == 0) { // Set first segment id to not trigger a flush (invalid from exclusive scan) scatter_pairs[0].key = pairs[0].key; if (!IS_LAST_TILE) tile_state.SetInclusive(0, tile_aggregate); } } else { // Exclusive scan of values and segment_flags TilePrefixCallbackOpT prefix_op(tile_state, temp_storage.prefix, scan_op, tile_idx); BlockScanT(temp_storage.scan).ExclusiveScan(pairs, scatter_pairs, scan_op, prefix_op); tile_aggregate = prefix_op.GetBlockAggregate(); } // Scatter updated values #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM) { if (scatter_pairs[ITEM].key != pairs[ITEM].key) { // Update the value at the key location ValueT value = d_fixup_in[scatter_pairs[ITEM].key]; value = reduction_op(value, scatter_pairs[ITEM].value); d_aggregates_out[scatter_pairs[ITEM].key] = value; } } // Finalize the last item if (IS_LAST_TILE) { // Last thread will output final count and last item, if necessary if (threadIdx.x == BLOCK_THREADS - 1) { // If the last tile is a whole tile, the inclusive prefix contains accumulated value reduction for the last segment if (num_remaining == TILE_ITEMS) { // Update the value at the key location OffsetT last_key = pairs[ITEMS_PER_THREAD - 1].key; d_aggregates_out[last_key] = reduction_op(tile_aggregate.value, d_fixup_in[last_key]); } } } } /** * Scan tiles of items as part of a dynamic chained scan */ __device__ __forceinline__ void ConsumeRange( int num_items, ///< Total number of input items int num_tiles, ///< Total number of input tiles ScanTileStateT& tile_state) ///< Global tile state descriptor { // Blocks are launched in increasing order, so just assign one tile per block int tile_idx = (blockIdx.x * gridDim.y) + blockIdx.y; // Current tile index OffsetT tile_offset = tile_idx * TILE_ITEMS; // Global offset for the current tile OffsetT num_remaining = num_items - tile_offset; // Remaining items (including this tile) if (num_remaining > TILE_ITEMS) { // Not the last tile (full) ConsumeTile<false>(num_remaining, tile_idx, tile_offset, tile_state, Int2Type<USE_ATOMIC_FIXUP>()); } else if (num_remaining > 0) { // The last tile (possibly partially-full) ConsumeTile<true>(num_remaining, tile_idx, tile_offset, tile_state, Int2Type<USE_ATOMIC_FIXUP>()); } } }; } // CUB namespace CUB_NS_POSTFIX // Optional outer namespace(s) |