agent_segment_fixup.cuh
16.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::AgentSegmentFixup implements a stateful abstraction of CUDA thread blocks for participating in device-wide reduce-value-by-key.
*/
#pragma once
#include <iterator>
#include "single_pass_scan_operators.cuh"
#include "../block/block_load.cuh"
#include "../block/block_store.cuh"
#include "../block/block_scan.cuh"
#include "../block/block_discontinuity.cuh"
#include "../iterator/cache_modified_input_iterator.cuh"
#include "../iterator/constant_input_iterator.cuh"
#include "../util_namespace.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/******************************************************************************
* Tuning policy types
******************************************************************************/
/**
* Parameterizable tuning policy type for AgentSegmentFixup
*/
template <
int _BLOCK_THREADS, ///< Threads per thread block
int _ITEMS_PER_THREAD, ///< Items per thread (per tile of input)
BlockLoadAlgorithm _LOAD_ALGORITHM, ///< The BlockLoad algorithm to use
CacheLoadModifier _LOAD_MODIFIER, ///< Cache load modifier for reading input elements
BlockScanAlgorithm _SCAN_ALGORITHM> ///< The BlockScan algorithm to use
struct AgentSegmentFixupPolicy
{
enum
{
BLOCK_THREADS = _BLOCK_THREADS, ///< Threads per thread block
ITEMS_PER_THREAD = _ITEMS_PER_THREAD, ///< Items per thread (per tile of input)
};
static const BlockLoadAlgorithm LOAD_ALGORITHM = _LOAD_ALGORITHM; ///< The BlockLoad algorithm to use
static const CacheLoadModifier LOAD_MODIFIER = _LOAD_MODIFIER; ///< Cache load modifier for reading input elements
static const BlockScanAlgorithm SCAN_ALGORITHM = _SCAN_ALGORITHM; ///< The BlockScan algorithm to use
};
/******************************************************************************
* Thread block abstractions
******************************************************************************/
/**
* \brief AgentSegmentFixup implements a stateful abstraction of CUDA thread blocks for participating in device-wide reduce-value-by-key
*/
template <
typename AgentSegmentFixupPolicyT, ///< Parameterized AgentSegmentFixupPolicy tuning policy type
typename PairsInputIteratorT, ///< Random-access input iterator type for keys
typename AggregatesOutputIteratorT, ///< Random-access output iterator type for values
typename EqualityOpT, ///< KeyT equality operator type
typename ReductionOpT, ///< ValueT reduction operator type
typename OffsetT> ///< Signed integer type for global offsets
struct AgentSegmentFixup
{
//---------------------------------------------------------------------
// Types and constants
//---------------------------------------------------------------------
// Data type of key-value input iterator
typedef typename std::iterator_traits<PairsInputIteratorT>::value_type KeyValuePairT;
// Value type
typedef typename KeyValuePairT::Value ValueT;
// Tile status descriptor interface type
typedef ReduceByKeyScanTileState<ValueT, OffsetT> ScanTileStateT;
// Constants
enum
{
BLOCK_THREADS = AgentSegmentFixupPolicyT::BLOCK_THREADS,
ITEMS_PER_THREAD = AgentSegmentFixupPolicyT::ITEMS_PER_THREAD,
TILE_ITEMS = BLOCK_THREADS * ITEMS_PER_THREAD,
// Whether or not do fixup using RLE + global atomics
USE_ATOMIC_FIXUP = (CUB_PTX_ARCH >= 350) &&
(Equals<ValueT, float>::VALUE ||
Equals<ValueT, int>::VALUE ||
Equals<ValueT, unsigned int>::VALUE ||
Equals<ValueT, unsigned long long>::VALUE),
// Whether or not the scan operation has a zero-valued identity value (true if we're performing addition on a primitive type)
HAS_IDENTITY_ZERO = (Equals<ReductionOpT, cub::Sum>::VALUE) && (Traits<ValueT>::PRIMITIVE),
};
// Cache-modified Input iterator wrapper type (for applying cache modifier) for keys
typedef typename If<IsPointer<PairsInputIteratorT>::VALUE,
CacheModifiedInputIterator<AgentSegmentFixupPolicyT::LOAD_MODIFIER, KeyValuePairT, OffsetT>, // Wrap the native input pointer with CacheModifiedValuesInputIterator
PairsInputIteratorT>::Type // Directly use the supplied input iterator type
WrappedPairsInputIteratorT;
// Cache-modified Input iterator wrapper type (for applying cache modifier) for fixup values
typedef typename If<IsPointer<AggregatesOutputIteratorT>::VALUE,
CacheModifiedInputIterator<AgentSegmentFixupPolicyT::LOAD_MODIFIER, ValueT, OffsetT>, // Wrap the native input pointer with CacheModifiedValuesInputIterator
AggregatesOutputIteratorT>::Type // Directly use the supplied input iterator type
WrappedFixupInputIteratorT;
// Reduce-value-by-segment scan operator
typedef ReduceByKeyOp<cub::Sum> ReduceBySegmentOpT;
// Parameterized BlockLoad type for pairs
typedef BlockLoad<
KeyValuePairT,
BLOCK_THREADS,
ITEMS_PER_THREAD,
AgentSegmentFixupPolicyT::LOAD_ALGORITHM>
BlockLoadPairs;
// Parameterized BlockScan type
typedef BlockScan<
KeyValuePairT,
BLOCK_THREADS,
AgentSegmentFixupPolicyT::SCAN_ALGORITHM>
BlockScanT;
// Callback type for obtaining tile prefix during block scan
typedef TilePrefixCallbackOp<
KeyValuePairT,
ReduceBySegmentOpT,
ScanTileStateT>
TilePrefixCallbackOpT;
// Shared memory type for this thread block
union _TempStorage
{
struct
{
typename BlockScanT::TempStorage scan; // Smem needed for tile scanning
typename TilePrefixCallbackOpT::TempStorage prefix; // Smem needed for cooperative prefix callback
};
// Smem needed for loading keys
typename BlockLoadPairs::TempStorage load_pairs;
};
// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
//---------------------------------------------------------------------
// Per-thread fields
//---------------------------------------------------------------------
_TempStorage& temp_storage; ///< Reference to temp_storage
WrappedPairsInputIteratorT d_pairs_in; ///< Input keys
AggregatesOutputIteratorT d_aggregates_out; ///< Output value aggregates
WrappedFixupInputIteratorT d_fixup_in; ///< Fixup input values
InequalityWrapper<EqualityOpT> inequality_op; ///< KeyT inequality operator
ReductionOpT reduction_op; ///< Reduction operator
ReduceBySegmentOpT scan_op; ///< Reduce-by-segment scan operator
//---------------------------------------------------------------------
// Constructor
//---------------------------------------------------------------------
// Constructor
__device__ __forceinline__
AgentSegmentFixup(
TempStorage& temp_storage, ///< Reference to temp_storage
PairsInputIteratorT d_pairs_in, ///< Input keys
AggregatesOutputIteratorT d_aggregates_out, ///< Output value aggregates
EqualityOpT equality_op, ///< KeyT equality operator
ReductionOpT reduction_op) ///< ValueT reduction operator
:
temp_storage(temp_storage.Alias()),
d_pairs_in(d_pairs_in),
d_aggregates_out(d_aggregates_out),
d_fixup_in(d_aggregates_out),
inequality_op(equality_op),
reduction_op(reduction_op),
scan_op(reduction_op)
{}
//---------------------------------------------------------------------
// Cooperatively scan a device-wide sequence of tiles with other CTAs
//---------------------------------------------------------------------
/**
* Process input tile. Specialized for atomic-fixup
*/
template <bool IS_LAST_TILE>
__device__ __forceinline__ void ConsumeTile(
OffsetT num_remaining, ///< Number of global input items remaining (including this tile)
int tile_idx, ///< Tile index
OffsetT tile_offset, ///< Tile offset
ScanTileStateT& tile_state, ///< Global tile state descriptor
Int2Type<true> use_atomic_fixup) ///< Marker whether to use atomicAdd (instead of reduce-by-key)
{
KeyValuePairT pairs[ITEMS_PER_THREAD];
// Load pairs
KeyValuePairT oob_pair;
oob_pair.key = -1;
if (IS_LAST_TILE)
BlockLoadPairs(temp_storage.load_pairs).Load(d_pairs_in + tile_offset, pairs, num_remaining, oob_pair);
else
BlockLoadPairs(temp_storage.load_pairs).Load(d_pairs_in + tile_offset, pairs);
// RLE
#pragma unroll
for (int ITEM = 1; ITEM < ITEMS_PER_THREAD; ++ITEM)
{
ValueT* d_scatter = d_aggregates_out + pairs[ITEM - 1].key;
if (pairs[ITEM].key != pairs[ITEM - 1].key)
atomicAdd(d_scatter, pairs[ITEM - 1].value);
else
pairs[ITEM].value = reduction_op(pairs[ITEM - 1].value, pairs[ITEM].value);
}
// Flush last item if valid
ValueT* d_scatter = d_aggregates_out + pairs[ITEMS_PER_THREAD - 1].key;
if ((!IS_LAST_TILE) || (pairs[ITEMS_PER_THREAD - 1].key >= 0))
atomicAdd(d_scatter, pairs[ITEMS_PER_THREAD - 1].value);
}
/**
* Process input tile. Specialized for reduce-by-key fixup
*/
template <bool IS_LAST_TILE>
__device__ __forceinline__ void ConsumeTile(
OffsetT num_remaining, ///< Number of global input items remaining (including this tile)
int tile_idx, ///< Tile index
OffsetT tile_offset, ///< Tile offset
ScanTileStateT& tile_state, ///< Global tile state descriptor
Int2Type<false> use_atomic_fixup) ///< Marker whether to use atomicAdd (instead of reduce-by-key)
{
KeyValuePairT pairs[ITEMS_PER_THREAD];
KeyValuePairT scatter_pairs[ITEMS_PER_THREAD];
// Load pairs
KeyValuePairT oob_pair;
oob_pair.key = -1;
if (IS_LAST_TILE)
BlockLoadPairs(temp_storage.load_pairs).Load(d_pairs_in + tile_offset, pairs, num_remaining, oob_pair);
else
BlockLoadPairs(temp_storage.load_pairs).Load(d_pairs_in + tile_offset, pairs);
CTA_SYNC();
KeyValuePairT tile_aggregate;
if (tile_idx == 0)
{
// Exclusive scan of values and segment_flags
BlockScanT(temp_storage.scan).ExclusiveScan(pairs, scatter_pairs, scan_op, tile_aggregate);
// Update tile status if this is not the last tile
if (threadIdx.x == 0)
{
// Set first segment id to not trigger a flush (invalid from exclusive scan)
scatter_pairs[0].key = pairs[0].key;
if (!IS_LAST_TILE)
tile_state.SetInclusive(0, tile_aggregate);
}
}
else
{
// Exclusive scan of values and segment_flags
TilePrefixCallbackOpT prefix_op(tile_state, temp_storage.prefix, scan_op, tile_idx);
BlockScanT(temp_storage.scan).ExclusiveScan(pairs, scatter_pairs, scan_op, prefix_op);
tile_aggregate = prefix_op.GetBlockAggregate();
}
// Scatter updated values
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
{
if (scatter_pairs[ITEM].key != pairs[ITEM].key)
{
// Update the value at the key location
ValueT value = d_fixup_in[scatter_pairs[ITEM].key];
value = reduction_op(value, scatter_pairs[ITEM].value);
d_aggregates_out[scatter_pairs[ITEM].key] = value;
}
}
// Finalize the last item
if (IS_LAST_TILE)
{
// Last thread will output final count and last item, if necessary
if (threadIdx.x == BLOCK_THREADS - 1)
{
// If the last tile is a whole tile, the inclusive prefix contains accumulated value reduction for the last segment
if (num_remaining == TILE_ITEMS)
{
// Update the value at the key location
OffsetT last_key = pairs[ITEMS_PER_THREAD - 1].key;
d_aggregates_out[last_key] = reduction_op(tile_aggregate.value, d_fixup_in[last_key]);
}
}
}
}
/**
* Scan tiles of items as part of a dynamic chained scan
*/
__device__ __forceinline__ void ConsumeRange(
int num_items, ///< Total number of input items
int num_tiles, ///< Total number of input tiles
ScanTileStateT& tile_state) ///< Global tile state descriptor
{
// Blocks are launched in increasing order, so just assign one tile per block
int tile_idx = (blockIdx.x * gridDim.y) + blockIdx.y; // Current tile index
OffsetT tile_offset = tile_idx * TILE_ITEMS; // Global offset for the current tile
OffsetT num_remaining = num_items - tile_offset; // Remaining items (including this tile)
if (num_remaining > TILE_ITEMS)
{
// Not the last tile (full)
ConsumeTile<false>(num_remaining, tile_idx, tile_offset, tile_state, Int2Type<USE_ATOMIC_FIXUP>());
}
else if (num_remaining > 0)
{
// The last tile (possibly partially-full)
ConsumeTile<true>(num_remaining, tile_idx, tile_offset, tile_state, Int2Type<USE_ATOMIC_FIXUP>());
}
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)