Blame view
tools/cub-1.8.0/cub/block/block_store.cuh
40.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 |
/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /** * \file * Operations for writing linear segments of data from the CUDA thread block */ #pragma once #include <iterator> #include "block_exchange.cuh" #include "../util_ptx.cuh" #include "../util_macro.cuh" #include "../util_type.cuh" #include "../util_namespace.cuh" /// Optional outer namespace(s) CUB_NS_PREFIX /// CUB namespace namespace cub { /** * \addtogroup UtilIo * @{ */ /******************************************************************//** * ame Blocked arrangement I/O (direct) *********************************************************************/ //@{ /** * \brief Store a blocked arrangement of items across a thread block into a linear segment of items. * * \blocked * * \tparam T <b>[inferred]</b> The data type to store. * \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread. * \tparam OutputIteratorT <b>[inferred]</b> The random-access iterator type for output \iterator. */ template < typename T, int ITEMS_PER_THREAD, typename OutputIteratorT> __device__ __forceinline__ void StoreDirectBlocked( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks) OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store { OutputIteratorT thread_itr = block_itr + (linear_tid * ITEMS_PER_THREAD); // Store directly in thread-blocked order #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { thread_itr[ITEM] = items[ITEM]; } } /** * \brief Store a blocked arrangement of items across a thread block into a linear segment of items, guarded by range * * \blocked * * \tparam T <b>[inferred]</b> The data type to store. * \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread. * \tparam OutputIteratorT <b>[inferred]</b> The random-access iterator type for output \iterator. */ template < typename T, int ITEMS_PER_THREAD, typename OutputIteratorT> __device__ __forceinline__ void StoreDirectBlocked( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks) OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store int valid_items) ///< [in] Number of valid items to write { OutputIteratorT thread_itr = block_itr + (linear_tid * ITEMS_PER_THREAD); // Store directly in thread-blocked order #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { if (ITEM + (linear_tid * ITEMS_PER_THREAD) < valid_items) { thread_itr[ITEM] = items[ITEM]; } } } /** * \brief Store a blocked arrangement of items across a thread block into a linear segment of items. * * \blocked * * The output offset (\p block_ptr + \p block_offset) must be quad-item aligned, * which is the default starting offset returned by \p cudaMalloc() * * \par * The following conditions will prevent vectorization and storing will fall back to cub::BLOCK_STORE_DIRECT: * - \p ITEMS_PER_THREAD is odd * - The data type \p T is not a built-in primitive or CUDA vector type (e.g., \p short, \p int2, \p double, \p float2, etc.) * * \tparam T <b>[inferred]</b> The data type to store. * \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread. * */ template < typename T, int ITEMS_PER_THREAD> __device__ __forceinline__ void StoreDirectBlockedVectorized( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks) T *block_ptr, ///< [in] Input pointer for storing from T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store { enum { // Maximum CUDA vector size is 4 elements MAX_VEC_SIZE = CUB_MIN(4, ITEMS_PER_THREAD), // Vector size must be a power of two and an even divisor of the items per thread VEC_SIZE = ((((MAX_VEC_SIZE - 1) & MAX_VEC_SIZE) == 0) && ((ITEMS_PER_THREAD % MAX_VEC_SIZE) == 0)) ? MAX_VEC_SIZE : 1, VECTORS_PER_THREAD = ITEMS_PER_THREAD / VEC_SIZE, }; // Vector type typedef typename CubVector<T, VEC_SIZE>::Type Vector; // Alias global pointer Vector *block_ptr_vectors = reinterpret_cast<Vector*>(const_cast<T*>(block_ptr)); // Alias pointers (use "raw" array here which should get optimized away to prevent conservative PTXAS lmem spilling) Vector raw_vector[VECTORS_PER_THREAD]; T *raw_items = reinterpret_cast<T*>(raw_vector); // Copy #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { raw_items[ITEM] = items[ITEM]; } // Direct-store using vector types StoreDirectBlocked(linear_tid, block_ptr_vectors, raw_vector); } //@} end member group /******************************************************************//** * ame Striped arrangement I/O (direct) *********************************************************************/ //@{ /** * \brief Store a striped arrangement of data across the thread block into a linear segment of items. * * \striped * * \tparam BLOCK_THREADS The thread block size in threads * \tparam T <b>[inferred]</b> The data type to store. * \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread. * \tparam OutputIteratorT <b>[inferred]</b> The random-access iterator type for output \iterator. */ template < int BLOCK_THREADS, typename T, int ITEMS_PER_THREAD, typename OutputIteratorT> __device__ __forceinline__ void StoreDirectStriped( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks) OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store { OutputIteratorT thread_itr = block_itr + linear_tid; // Store directly in striped order #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { thread_itr[(ITEM * BLOCK_THREADS)] = items[ITEM]; } } /** * \brief Store a striped arrangement of data across the thread block into a linear segment of items, guarded by range * * \striped * * \tparam BLOCK_THREADS The thread block size in threads * \tparam T <b>[inferred]</b> The data type to store. * \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread. * \tparam OutputIteratorT <b>[inferred]</b> The random-access iterator type for output \iterator. */ template < int BLOCK_THREADS, typename T, int ITEMS_PER_THREAD, typename OutputIteratorT> __device__ __forceinline__ void StoreDirectStriped( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks) OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store int valid_items) ///< [in] Number of valid items to write { OutputIteratorT thread_itr = block_itr + linear_tid; // Store directly in striped order #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { if ((ITEM * BLOCK_THREADS) + linear_tid < valid_items) { thread_itr[(ITEM * BLOCK_THREADS)] = items[ITEM]; } } } //@} end member group /******************************************************************//** * ame Warp-striped arrangement I/O (direct) *********************************************************************/ //@{ /** * \brief Store a warp-striped arrangement of data across the thread block into a linear segment of items. * * \warpstriped * * \par Usage Considerations * The number of threads in the thread block must be a multiple of the architecture's warp size. * * \tparam T <b>[inferred]</b> The data type to store. * \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread. * \tparam OutputIteratorT <b>[inferred]</b> The random-access iterator type for output \iterator. */ template < typename T, int ITEMS_PER_THREAD, typename OutputIteratorT> __device__ __forceinline__ void StoreDirectWarpStriped( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks) OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load { int tid = linear_tid & (CUB_PTX_WARP_THREADS - 1); int wid = linear_tid >> CUB_PTX_LOG_WARP_THREADS; int warp_offset = wid * CUB_PTX_WARP_THREADS * ITEMS_PER_THREAD; OutputIteratorT thread_itr = block_itr + warp_offset + tid; // Store directly in warp-striped order #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { thread_itr[(ITEM * CUB_PTX_WARP_THREADS)] = items[ITEM]; } } /** * \brief Store a warp-striped arrangement of data across the thread block into a linear segment of items, guarded by range * * \warpstriped * * \par Usage Considerations * The number of threads in the thread block must be a multiple of the architecture's warp size. * * \tparam T <b>[inferred]</b> The data type to store. * \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread. * \tparam OutputIteratorT <b>[inferred]</b> The random-access iterator type for output \iterator. */ template < typename T, int ITEMS_PER_THREAD, typename OutputIteratorT> __device__ __forceinline__ void StoreDirectWarpStriped( int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks) OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store int valid_items) ///< [in] Number of valid items to write { int tid = linear_tid & (CUB_PTX_WARP_THREADS - 1); int wid = linear_tid >> CUB_PTX_LOG_WARP_THREADS; int warp_offset = wid * CUB_PTX_WARP_THREADS * ITEMS_PER_THREAD; OutputIteratorT thread_itr = block_itr + warp_offset + tid; // Store directly in warp-striped order #pragma unroll for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++) { if (warp_offset + tid + (ITEM * CUB_PTX_WARP_THREADS) < valid_items) { thread_itr[(ITEM * CUB_PTX_WARP_THREADS)] = items[ITEM]; } } } //@} end member group /** @} */ // end group UtilIo //----------------------------------------------------------------------------- // Generic BlockStore abstraction //----------------------------------------------------------------------------- /** * \brief cub::BlockStoreAlgorithm enumerates alternative algorithms for cub::BlockStore to write a blocked arrangement of items across a CUDA thread block to a linear segment of memory. */ enum BlockStoreAlgorithm { /** * \par Overview * * A [<em>blocked arrangement</em>](index.html#sec5sec3) of data is written * directly to memory. * * \par Performance Considerations * - The utilization of memory transactions (coalescing) decreases as the * access stride between threads increases (i.e., the number items per thread). */ BLOCK_STORE_DIRECT, /** * \par Overview * * A [<em>blocked arrangement</em>](index.html#sec5sec3) of data is written directly * to memory using CUDA's built-in vectorized stores as a coalescing optimization. * For example, <tt>st.global.v4.s32</tt> instructions will be generated * when \p T = \p int and \p ITEMS_PER_THREAD % 4 == 0. * * \par Performance Considerations * - The utilization of memory transactions (coalescing) remains high until the the * access stride between threads (i.e., the number items per thread) exceeds the * maximum vector store width (typically 4 items or 64B, whichever is lower). * - The following conditions will prevent vectorization and writing will fall back to cub::BLOCK_STORE_DIRECT: * - \p ITEMS_PER_THREAD is odd * - The \p OutputIteratorT is not a simple pointer type * - The block output offset is not quadword-aligned * - The data type \p T is not a built-in primitive or CUDA vector type (e.g., \p short, \p int2, \p double, \p float2, etc.) */ BLOCK_STORE_VECTORIZE, /** * \par Overview * A [<em>blocked arrangement</em>](index.html#sec5sec3) is locally * transposed and then efficiently written to memory as a [<em>striped arrangement</em>](index.html#sec5sec3). * * \par Performance Considerations * - The utilization of memory transactions (coalescing) remains high regardless * of items written per thread. * - The local reordering incurs slightly longer latencies and throughput than the * direct cub::BLOCK_STORE_DIRECT and cub::BLOCK_STORE_VECTORIZE alternatives. */ BLOCK_STORE_TRANSPOSE, /** * \par Overview * A [<em>blocked arrangement</em>](index.html#sec5sec3) is locally * transposed and then efficiently written to memory as a * [<em>warp-striped arrangement</em>](index.html#sec5sec3) * * \par Usage Considerations * - BLOCK_THREADS must be a multiple of WARP_THREADS * * \par Performance Considerations * - The utilization of memory transactions (coalescing) remains high regardless * of items written per thread. * - The local reordering incurs slightly longer latencies and throughput than the * direct cub::BLOCK_STORE_DIRECT and cub::BLOCK_STORE_VECTORIZE alternatives. */ BLOCK_STORE_WARP_TRANSPOSE, /** * \par Overview * A [<em>blocked arrangement</em>](index.html#sec5sec3) is locally * transposed and then efficiently written to memory as a * [<em>warp-striped arrangement</em>](index.html#sec5sec3) * To reduce the shared memory requirement, only one warp's worth of shared * memory is provisioned and is subsequently time-sliced among warps. * * \par Usage Considerations * - BLOCK_THREADS must be a multiple of WARP_THREADS * * \par Performance Considerations * - The utilization of memory transactions (coalescing) remains high regardless * of items written per thread. * - Provisions less shared memory temporary storage, but incurs larger * latencies than the BLOCK_STORE_WARP_TRANSPOSE alternative. */ BLOCK_STORE_WARP_TRANSPOSE_TIMESLICED, }; /** * \brief The BlockStore class provides [<em>collective</em>](index.html#sec0) data movement methods for writing a [<em>blocked arrangement</em>](index.html#sec5sec3) of items partitioned across a CUDA thread block to a linear segment of memory. ![](block_store_logo.png) * \ingroup BlockModule * \ingroup UtilIo * * \tparam T The type of data to be written. * \tparam BLOCK_DIM_X The thread block length in threads along the X dimension * \tparam ITEMS_PER_THREAD The number of consecutive items partitioned onto each thread. * \tparam ALGORITHM <b>[optional]</b> cub::BlockStoreAlgorithm tuning policy enumeration. default: cub::BLOCK_STORE_DIRECT. * \tparam WARP_TIME_SLICING <b>[optional]</b> Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any load-related data transpositions (versus each warp having its own storage). (default: false) * \tparam BLOCK_DIM_Y <b>[optional]</b> The thread block length in threads along the Y dimension (default: 1) * \tparam BLOCK_DIM_Z <b>[optional]</b> The thread block length in threads along the Z dimension (default: 1) * \tparam PTX_ARCH <b>[optional]</b> \ptxversion * * \par Overview * - The BlockStore class provides a single data movement abstraction that can be specialized * to implement different cub::BlockStoreAlgorithm strategies. This facilitates different * performance policies for different architectures, data types, granularity sizes, etc. * - BlockStore can be optionally specialized by different data movement strategies: * -# <b>cub::BLOCK_STORE_DIRECT</b>. A [<em>blocked arrangement</em>](index.html#sec5sec3) of data is written * directly to memory. [More...](\ref cub::BlockStoreAlgorithm) * -# <b>cub::BLOCK_STORE_VECTORIZE</b>. A [<em>blocked arrangement</em>](index.html#sec5sec3) * of data is written directly to memory using CUDA's built-in vectorized stores as a * coalescing optimization. [More...](\ref cub::BlockStoreAlgorithm) * -# <b>cub::BLOCK_STORE_TRANSPOSE</b>. A [<em>blocked arrangement</em>](index.html#sec5sec3) * is locally transposed into a [<em>striped arrangement</em>](index.html#sec5sec3) which is * then written to memory. [More...](\ref cub::BlockStoreAlgorithm) * -# <b>cub::BLOCK_STORE_WARP_TRANSPOSE</b>. A [<em>blocked arrangement</em>](index.html#sec5sec3) * is locally transposed into a [<em>warp-striped arrangement</em>](index.html#sec5sec3) which is * then written to memory. [More...](\ref cub::BlockStoreAlgorithm) * - \rowmajor * * \par A Simple Example * \blockcollective{BlockStore} * \par * The code snippet below illustrates the storing of a "blocked" arrangement * of 512 integers across 128 threads (where each thread owns 4 consecutive items) * into a linear segment of memory. The store is specialized for \p BLOCK_STORE_WARP_TRANSPOSE, * meaning items are locally reordered among threads so that memory references will be * efficiently coalesced using a warp-striped access pattern. * \par * \code * #include <cub/cub.cuh> // or equivalently <cub/block/block_store.cuh> * * __global__ void ExampleKernel(int *d_data, ...) * { * // Specialize BlockStore for a 1D block of 128 threads owning 4 integer items each * typedef cub::BlockStore<int, 128, 4, BLOCK_STORE_WARP_TRANSPOSE> BlockStore; * * // Allocate shared memory for BlockStore * __shared__ typename BlockStore::TempStorage temp_storage; * * // Obtain a segment of consecutive items that are blocked across threads * int thread_data[4]; * ... * * // Store items to linear memory * int thread_data[4]; * BlockStore(temp_storage).Store(d_data, thread_data); * * \endcode * \par * Suppose the set of \p thread_data across the block of threads is * <tt>{ [0,1,2,3], [4,5,6,7], ..., [508,509,510,511] }</tt>. * The output \p d_data will be <tt>0, 1, 2, 3, 4, 5, ...</tt>. * */ template < typename T, int BLOCK_DIM_X, int ITEMS_PER_THREAD, BlockStoreAlgorithm ALGORITHM = BLOCK_STORE_DIRECT, int BLOCK_DIM_Y = 1, int BLOCK_DIM_Z = 1, int PTX_ARCH = CUB_PTX_ARCH> class BlockStore { private: /****************************************************************************** * Constants and typed definitions ******************************************************************************/ /// Constants enum { /// The thread block size in threads BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z, }; /****************************************************************************** * Algorithmic variants ******************************************************************************/ /// Store helper template <BlockStoreAlgorithm _POLICY, int DUMMY> struct StoreInternal; /** * BLOCK_STORE_DIRECT specialization of store helper */ template <int DUMMY> struct StoreInternal<BLOCK_STORE_DIRECT, DUMMY> { /// Shared memory storage layout type typedef NullType TempStorage; /// Linear thread-id int linear_tid; /// Constructor __device__ __forceinline__ StoreInternal( TempStorage &/*temp_storage*/, int linear_tid) : linear_tid(linear_tid) {} /// Store items into a linear segment of memory template <typename OutputIteratorT> __device__ __forceinline__ void Store( OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store { StoreDirectBlocked(linear_tid, block_itr, items); } /// Store items into a linear segment of memory, guarded by range template <typename OutputIteratorT> __device__ __forceinline__ void Store( OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store int valid_items) ///< [in] Number of valid items to write { StoreDirectBlocked(linear_tid, block_itr, items, valid_items); } }; /** * BLOCK_STORE_VECTORIZE specialization of store helper */ template <int DUMMY> struct StoreInternal<BLOCK_STORE_VECTORIZE, DUMMY> { /// Shared memory storage layout type typedef NullType TempStorage; /// Linear thread-id int linear_tid; /// Constructor __device__ __forceinline__ StoreInternal( TempStorage &/*temp_storage*/, int linear_tid) : linear_tid(linear_tid) {} /// Store items into a linear segment of memory, specialized for native pointer types (attempts vectorization) __device__ __forceinline__ void Store( T *block_ptr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store { StoreDirectBlockedVectorized(linear_tid, block_ptr, items); } /// Store items into a linear segment of memory, specialized for opaque input iterators (skips vectorization) template <typename OutputIteratorT> __device__ __forceinline__ void Store( OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store { StoreDirectBlocked(linear_tid, block_itr, items); } /// Store items into a linear segment of memory, guarded by range template <typename OutputIteratorT> __device__ __forceinline__ void Store( OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store int valid_items) ///< [in] Number of valid items to write { StoreDirectBlocked(linear_tid, block_itr, items, valid_items); } }; /** * BLOCK_STORE_TRANSPOSE specialization of store helper */ template <int DUMMY> struct StoreInternal<BLOCK_STORE_TRANSPOSE, DUMMY> { // BlockExchange utility type for keys typedef BlockExchange<T, BLOCK_DIM_X, ITEMS_PER_THREAD, false, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> BlockExchange; /// Shared memory storage layout type struct _TempStorage : BlockExchange::TempStorage { /// Temporary storage for partially-full block guard volatile int valid_items; }; /// Alias wrapper allowing storage to be unioned struct TempStorage : Uninitialized<_TempStorage> {}; /// Thread reference to shared storage _TempStorage &temp_storage; /// Linear thread-id int linear_tid; /// Constructor __device__ __forceinline__ StoreInternal( TempStorage &temp_storage, int linear_tid) : temp_storage(temp_storage.Alias()), linear_tid(linear_tid) {} /// Store items into a linear segment of memory template <typename OutputIteratorT> __device__ __forceinline__ void Store( OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store { BlockExchange(temp_storage).BlockedToStriped(items); StoreDirectStriped<BLOCK_THREADS>(linear_tid, block_itr, items); } /// Store items into a linear segment of memory, guarded by range template <typename OutputIteratorT> __device__ __forceinline__ void Store( OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store int valid_items) ///< [in] Number of valid items to write { BlockExchange(temp_storage).BlockedToStriped(items); if (linear_tid == 0) temp_storage.valid_items = valid_items; // Move through volatile smem as a workaround to prevent RF spilling on subsequent loads CTA_SYNC(); StoreDirectStriped<BLOCK_THREADS>(linear_tid, block_itr, items, temp_storage.valid_items); } }; /** * BLOCK_STORE_WARP_TRANSPOSE specialization of store helper */ template <int DUMMY> struct StoreInternal<BLOCK_STORE_WARP_TRANSPOSE, DUMMY> { enum { WARP_THREADS = CUB_WARP_THREADS(PTX_ARCH) }; // Assert BLOCK_THREADS must be a multiple of WARP_THREADS CUB_STATIC_ASSERT((BLOCK_THREADS % WARP_THREADS == 0), "BLOCK_THREADS must be a multiple of WARP_THREADS"); // BlockExchange utility type for keys typedef BlockExchange<T, BLOCK_DIM_X, ITEMS_PER_THREAD, false, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> BlockExchange; /// Shared memory storage layout type struct _TempStorage : BlockExchange::TempStorage { /// Temporary storage for partially-full block guard volatile int valid_items; }; /// Alias wrapper allowing storage to be unioned struct TempStorage : Uninitialized<_TempStorage> {}; /// Thread reference to shared storage _TempStorage &temp_storage; /// Linear thread-id int linear_tid; /// Constructor __device__ __forceinline__ StoreInternal( TempStorage &temp_storage, int linear_tid) : temp_storage(temp_storage.Alias()), linear_tid(linear_tid) {} /// Store items into a linear segment of memory template <typename OutputIteratorT> __device__ __forceinline__ void Store( OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store { BlockExchange(temp_storage).BlockedToWarpStriped(items); StoreDirectWarpStriped(linear_tid, block_itr, items); } /// Store items into a linear segment of memory, guarded by range template <typename OutputIteratorT> __device__ __forceinline__ void Store( OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store int valid_items) ///< [in] Number of valid items to write { BlockExchange(temp_storage).BlockedToWarpStriped(items); if (linear_tid == 0) temp_storage.valid_items = valid_items; // Move through volatile smem as a workaround to prevent RF spilling on subsequent loads CTA_SYNC(); StoreDirectWarpStriped(linear_tid, block_itr, items, temp_storage.valid_items); } }; /** * BLOCK_STORE_WARP_TRANSPOSE_TIMESLICED specialization of store helper */ template <int DUMMY> struct StoreInternal<BLOCK_STORE_WARP_TRANSPOSE_TIMESLICED, DUMMY> { enum { WARP_THREADS = CUB_WARP_THREADS(PTX_ARCH) }; // Assert BLOCK_THREADS must be a multiple of WARP_THREADS CUB_STATIC_ASSERT((BLOCK_THREADS % WARP_THREADS == 0), "BLOCK_THREADS must be a multiple of WARP_THREADS"); // BlockExchange utility type for keys typedef BlockExchange<T, BLOCK_DIM_X, ITEMS_PER_THREAD, true, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> BlockExchange; /// Shared memory storage layout type struct _TempStorage : BlockExchange::TempStorage { /// Temporary storage for partially-full block guard volatile int valid_items; }; /// Alias wrapper allowing storage to be unioned struct TempStorage : Uninitialized<_TempStorage> {}; /// Thread reference to shared storage _TempStorage &temp_storage; /// Linear thread-id int linear_tid; /// Constructor __device__ __forceinline__ StoreInternal( TempStorage &temp_storage, int linear_tid) : temp_storage(temp_storage.Alias()), linear_tid(linear_tid) {} /// Store items into a linear segment of memory template <typename OutputIteratorT> __device__ __forceinline__ void Store( OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store { BlockExchange(temp_storage).BlockedToWarpStriped(items); StoreDirectWarpStriped(linear_tid, block_itr, items); } /// Store items into a linear segment of memory, guarded by range template <typename OutputIteratorT> __device__ __forceinline__ void Store( OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store int valid_items) ///< [in] Number of valid items to write { BlockExchange(temp_storage).BlockedToWarpStriped(items); if (linear_tid == 0) temp_storage.valid_items = valid_items; // Move through volatile smem as a workaround to prevent RF spilling on subsequent loads CTA_SYNC(); StoreDirectWarpStriped(linear_tid, block_itr, items, temp_storage.valid_items); } }; /****************************************************************************** * Type definitions ******************************************************************************/ /// Internal load implementation to use typedef StoreInternal<ALGORITHM, 0> InternalStore; /// Shared memory storage layout type typedef typename InternalStore::TempStorage _TempStorage; /****************************************************************************** * Utility methods ******************************************************************************/ /// Internal storage allocator __device__ __forceinline__ _TempStorage& PrivateStorage() { __shared__ _TempStorage private_storage; return private_storage; } /****************************************************************************** * Thread fields ******************************************************************************/ /// Thread reference to shared storage _TempStorage &temp_storage; /// Linear thread-id int linear_tid; public: /// \smemstorage{BlockStore} struct TempStorage : Uninitialized<_TempStorage> {}; /******************************************************************//** * ame Collective constructors *********************************************************************/ //@{ /** * \brief Collective constructor using a private static allocation of shared memory as temporary storage. */ __device__ __forceinline__ BlockStore() : temp_storage(PrivateStorage()), linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z)) {} /** * \brief Collective constructor using the specified memory allocation as temporary storage. */ __device__ __forceinline__ BlockStore( TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage : temp_storage(temp_storage.Alias()), linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z)) {} //@} end member group /******************************************************************//** * ame Data movement *********************************************************************/ //@{ /** * \brief Store items into a linear segment of memory. * * \par * - \blocked * - \smemreuse * * \par Snippet * The code snippet below illustrates the storing of a "blocked" arrangement * of 512 integers across 128 threads (where each thread owns 4 consecutive items) * into a linear segment of memory. The store is specialized for \p BLOCK_STORE_WARP_TRANSPOSE, * meaning items are locally reordered among threads so that memory references will be * efficiently coalesced using a warp-striped access pattern. * \par * \code * #include <cub/cub.cuh> // or equivalently <cub/block/block_store.cuh> * * __global__ void ExampleKernel(int *d_data, ...) * { * // Specialize BlockStore for a 1D block of 128 threads owning 4 integer items each * typedef cub::BlockStore<int, 128, 4, BLOCK_STORE_WARP_TRANSPOSE> BlockStore; * * // Allocate shared memory for BlockStore * __shared__ typename BlockStore::TempStorage temp_storage; * * // Obtain a segment of consecutive items that are blocked across threads * int thread_data[4]; * ... * * // Store items to linear memory * int thread_data[4]; * BlockStore(temp_storage).Store(d_data, thread_data); * * \endcode * \par * Suppose the set of \p thread_data across the block of threads is * <tt>{ [0,1,2,3], [4,5,6,7], ..., [508,509,510,511] }</tt>. * The output \p d_data will be <tt>0, 1, 2, 3, 4, 5, ...</tt>. * */ template <typename OutputIteratorT> __device__ __forceinline__ void Store( OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store { InternalStore(temp_storage, linear_tid).Store(block_itr, items); } /** * \brief Store items into a linear segment of memory, guarded by range. * * \par * - \blocked * - \smemreuse * * \par Snippet * The code snippet below illustrates the guarded storing of a "blocked" arrangement * of 512 integers across 128 threads (where each thread owns 4 consecutive items) * into a linear segment of memory. The store is specialized for \p BLOCK_STORE_WARP_TRANSPOSE, * meaning items are locally reordered among threads so that memory references will be * efficiently coalesced using a warp-striped access pattern. * \par * \code * #include <cub/cub.cuh> // or equivalently <cub/block/block_store.cuh> * * __global__ void ExampleKernel(int *d_data, int valid_items, ...) * { * // Specialize BlockStore for a 1D block of 128 threads owning 4 integer items each * typedef cub::BlockStore<int, 128, 4, BLOCK_STORE_WARP_TRANSPOSE> BlockStore; * * // Allocate shared memory for BlockStore * __shared__ typename BlockStore::TempStorage temp_storage; * * // Obtain a segment of consecutive items that are blocked across threads * int thread_data[4]; * ... * * // Store items to linear memory * int thread_data[4]; * BlockStore(temp_storage).Store(d_data, thread_data, valid_items); * * \endcode * \par * Suppose the set of \p thread_data across the block of threads is * <tt>{ [0,1,2,3], [4,5,6,7], ..., [508,509,510,511] }</tt> and \p valid_items is \p 5. * The output \p d_data will be <tt>0, 1, 2, 3, 4, ?, ?, ?, ...</tt>, with * only the first two threads being unmasked to store portions of valid data. * */ template <typename OutputIteratorT> __device__ __forceinline__ void Store( OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store int valid_items) ///< [in] Number of valid items to write { InternalStore(temp_storage, linear_tid).Store(block_itr, items, valid_items); } }; } // CUB namespace CUB_NS_POSTFIX // Optional outer namespace(s) |