block_store.cuh
40.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* Operations for writing linear segments of data from the CUDA thread block
*/
#pragma once
#include <iterator>
#include "block_exchange.cuh"
#include "../util_ptx.cuh"
#include "../util_macro.cuh"
#include "../util_type.cuh"
#include "../util_namespace.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/**
* \addtogroup UtilIo
* @{
*/
/******************************************************************//**
* \name Blocked arrangement I/O (direct)
*********************************************************************/
//@{
/**
* \brief Store a blocked arrangement of items across a thread block into a linear segment of items.
*
* \blocked
*
* \tparam T <b>[inferred]</b> The data type to store.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam OutputIteratorT <b>[inferred]</b> The random-access iterator type for output \iterator.
*/
template <
typename T,
int ITEMS_PER_THREAD,
typename OutputIteratorT>
__device__ __forceinline__ void StoreDirectBlocked(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store
{
OutputIteratorT thread_itr = block_itr + (linear_tid * ITEMS_PER_THREAD);
// Store directly in thread-blocked order
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
thread_itr[ITEM] = items[ITEM];
}
}
/**
* \brief Store a blocked arrangement of items across a thread block into a linear segment of items, guarded by range
*
* \blocked
*
* \tparam T <b>[inferred]</b> The data type to store.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam OutputIteratorT <b>[inferred]</b> The random-access iterator type for output \iterator.
*/
template <
typename T,
int ITEMS_PER_THREAD,
typename OutputIteratorT>
__device__ __forceinline__ void StoreDirectBlocked(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store
int valid_items) ///< [in] Number of valid items to write
{
OutputIteratorT thread_itr = block_itr + (linear_tid * ITEMS_PER_THREAD);
// Store directly in thread-blocked order
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
if (ITEM + (linear_tid * ITEMS_PER_THREAD) < valid_items)
{
thread_itr[ITEM] = items[ITEM];
}
}
}
/**
* \brief Store a blocked arrangement of items across a thread block into a linear segment of items.
*
* \blocked
*
* The output offset (\p block_ptr + \p block_offset) must be quad-item aligned,
* which is the default starting offset returned by \p cudaMalloc()
*
* \par
* The following conditions will prevent vectorization and storing will fall back to cub::BLOCK_STORE_DIRECT:
* - \p ITEMS_PER_THREAD is odd
* - The data type \p T is not a built-in primitive or CUDA vector type (e.g., \p short, \p int2, \p double, \p float2, etc.)
*
* \tparam T <b>[inferred]</b> The data type to store.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
*
*/
template <
typename T,
int ITEMS_PER_THREAD>
__device__ __forceinline__ void StoreDirectBlockedVectorized(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
T *block_ptr, ///< [in] Input pointer for storing from
T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store
{
enum
{
// Maximum CUDA vector size is 4 elements
MAX_VEC_SIZE = CUB_MIN(4, ITEMS_PER_THREAD),
// Vector size must be a power of two and an even divisor of the items per thread
VEC_SIZE = ((((MAX_VEC_SIZE - 1) & MAX_VEC_SIZE) == 0) && ((ITEMS_PER_THREAD % MAX_VEC_SIZE) == 0)) ?
MAX_VEC_SIZE :
1,
VECTORS_PER_THREAD = ITEMS_PER_THREAD / VEC_SIZE,
};
// Vector type
typedef typename CubVector<T, VEC_SIZE>::Type Vector;
// Alias global pointer
Vector *block_ptr_vectors = reinterpret_cast<Vector*>(const_cast<T*>(block_ptr));
// Alias pointers (use "raw" array here which should get optimized away to prevent conservative PTXAS lmem spilling)
Vector raw_vector[VECTORS_PER_THREAD];
T *raw_items = reinterpret_cast<T*>(raw_vector);
// Copy
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
raw_items[ITEM] = items[ITEM];
}
// Direct-store using vector types
StoreDirectBlocked(linear_tid, block_ptr_vectors, raw_vector);
}
//@} end member group
/******************************************************************//**
* \name Striped arrangement I/O (direct)
*********************************************************************/
//@{
/**
* \brief Store a striped arrangement of data across the thread block into a linear segment of items.
*
* \striped
*
* \tparam BLOCK_THREADS The thread block size in threads
* \tparam T <b>[inferred]</b> The data type to store.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam OutputIteratorT <b>[inferred]</b> The random-access iterator type for output \iterator.
*/
template <
int BLOCK_THREADS,
typename T,
int ITEMS_PER_THREAD,
typename OutputIteratorT>
__device__ __forceinline__ void StoreDirectStriped(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store
{
OutputIteratorT thread_itr = block_itr + linear_tid;
// Store directly in striped order
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
thread_itr[(ITEM * BLOCK_THREADS)] = items[ITEM];
}
}
/**
* \brief Store a striped arrangement of data across the thread block into a linear segment of items, guarded by range
*
* \striped
*
* \tparam BLOCK_THREADS The thread block size in threads
* \tparam T <b>[inferred]</b> The data type to store.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam OutputIteratorT <b>[inferred]</b> The random-access iterator type for output \iterator.
*/
template <
int BLOCK_THREADS,
typename T,
int ITEMS_PER_THREAD,
typename OutputIteratorT>
__device__ __forceinline__ void StoreDirectStriped(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store
int valid_items) ///< [in] Number of valid items to write
{
OutputIteratorT thread_itr = block_itr + linear_tid;
// Store directly in striped order
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
if ((ITEM * BLOCK_THREADS) + linear_tid < valid_items)
{
thread_itr[(ITEM * BLOCK_THREADS)] = items[ITEM];
}
}
}
//@} end member group
/******************************************************************//**
* \name Warp-striped arrangement I/O (direct)
*********************************************************************/
//@{
/**
* \brief Store a warp-striped arrangement of data across the thread block into a linear segment of items.
*
* \warpstriped
*
* \par Usage Considerations
* The number of threads in the thread block must be a multiple of the architecture's warp size.
*
* \tparam T <b>[inferred]</b> The data type to store.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam OutputIteratorT <b>[inferred]</b> The random-access iterator type for output \iterator.
*/
template <
typename T,
int ITEMS_PER_THREAD,
typename OutputIteratorT>
__device__ __forceinline__ void StoreDirectWarpStriped(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD]) ///< [out] Data to load
{
int tid = linear_tid & (CUB_PTX_WARP_THREADS - 1);
int wid = linear_tid >> CUB_PTX_LOG_WARP_THREADS;
int warp_offset = wid * CUB_PTX_WARP_THREADS * ITEMS_PER_THREAD;
OutputIteratorT thread_itr = block_itr + warp_offset + tid;
// Store directly in warp-striped order
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
thread_itr[(ITEM * CUB_PTX_WARP_THREADS)] = items[ITEM];
}
}
/**
* \brief Store a warp-striped arrangement of data across the thread block into a linear segment of items, guarded by range
*
* \warpstriped
*
* \par Usage Considerations
* The number of threads in the thread block must be a multiple of the architecture's warp size.
*
* \tparam T <b>[inferred]</b> The data type to store.
* \tparam ITEMS_PER_THREAD <b>[inferred]</b> The number of consecutive items partitioned onto each thread.
* \tparam OutputIteratorT <b>[inferred]</b> The random-access iterator type for output \iterator.
*/
template <
typename T,
int ITEMS_PER_THREAD,
typename OutputIteratorT>
__device__ __forceinline__ void StoreDirectWarpStriped(
int linear_tid, ///< [in] A suitable 1D thread-identifier for the calling thread (e.g., <tt>(threadIdx.y * blockDim.x) + linear_tid</tt> for 2D thread blocks)
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store
int valid_items) ///< [in] Number of valid items to write
{
int tid = linear_tid & (CUB_PTX_WARP_THREADS - 1);
int wid = linear_tid >> CUB_PTX_LOG_WARP_THREADS;
int warp_offset = wid * CUB_PTX_WARP_THREADS * ITEMS_PER_THREAD;
OutputIteratorT thread_itr = block_itr + warp_offset + tid;
// Store directly in warp-striped order
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ITEM++)
{
if (warp_offset + tid + (ITEM * CUB_PTX_WARP_THREADS) < valid_items)
{
thread_itr[(ITEM * CUB_PTX_WARP_THREADS)] = items[ITEM];
}
}
}
//@} end member group
/** @} */ // end group UtilIo
//-----------------------------------------------------------------------------
// Generic BlockStore abstraction
//-----------------------------------------------------------------------------
/**
* \brief cub::BlockStoreAlgorithm enumerates alternative algorithms for cub::BlockStore to write a blocked arrangement of items across a CUDA thread block to a linear segment of memory.
*/
enum BlockStoreAlgorithm
{
/**
* \par Overview
*
* A [<em>blocked arrangement</em>](index.html#sec5sec3) of data is written
* directly to memory.
*
* \par Performance Considerations
* - The utilization of memory transactions (coalescing) decreases as the
* access stride between threads increases (i.e., the number items per thread).
*/
BLOCK_STORE_DIRECT,
/**
* \par Overview
*
* A [<em>blocked arrangement</em>](index.html#sec5sec3) of data is written directly
* to memory using CUDA's built-in vectorized stores as a coalescing optimization.
* For example, <tt>st.global.v4.s32</tt> instructions will be generated
* when \p T = \p int and \p ITEMS_PER_THREAD % 4 == 0.
*
* \par Performance Considerations
* - The utilization of memory transactions (coalescing) remains high until the the
* access stride between threads (i.e., the number items per thread) exceeds the
* maximum vector store width (typically 4 items or 64B, whichever is lower).
* - The following conditions will prevent vectorization and writing will fall back to cub::BLOCK_STORE_DIRECT:
* - \p ITEMS_PER_THREAD is odd
* - The \p OutputIteratorT is not a simple pointer type
* - The block output offset is not quadword-aligned
* - The data type \p T is not a built-in primitive or CUDA vector type (e.g., \p short, \p int2, \p double, \p float2, etc.)
*/
BLOCK_STORE_VECTORIZE,
/**
* \par Overview
* A [<em>blocked arrangement</em>](index.html#sec5sec3) is locally
* transposed and then efficiently written to memory as a [<em>striped arrangement</em>](index.html#sec5sec3).
*
* \par Performance Considerations
* - The utilization of memory transactions (coalescing) remains high regardless
* of items written per thread.
* - The local reordering incurs slightly longer latencies and throughput than the
* direct cub::BLOCK_STORE_DIRECT and cub::BLOCK_STORE_VECTORIZE alternatives.
*/
BLOCK_STORE_TRANSPOSE,
/**
* \par Overview
* A [<em>blocked arrangement</em>](index.html#sec5sec3) is locally
* transposed and then efficiently written to memory as a
* [<em>warp-striped arrangement</em>](index.html#sec5sec3)
*
* \par Usage Considerations
* - BLOCK_THREADS must be a multiple of WARP_THREADS
*
* \par Performance Considerations
* - The utilization of memory transactions (coalescing) remains high regardless
* of items written per thread.
* - The local reordering incurs slightly longer latencies and throughput than the
* direct cub::BLOCK_STORE_DIRECT and cub::BLOCK_STORE_VECTORIZE alternatives.
*/
BLOCK_STORE_WARP_TRANSPOSE,
/**
* \par Overview
* A [<em>blocked arrangement</em>](index.html#sec5sec3) is locally
* transposed and then efficiently written to memory as a
* [<em>warp-striped arrangement</em>](index.html#sec5sec3)
* To reduce the shared memory requirement, only one warp's worth of shared
* memory is provisioned and is subsequently time-sliced among warps.
*
* \par Usage Considerations
* - BLOCK_THREADS must be a multiple of WARP_THREADS
*
* \par Performance Considerations
* - The utilization of memory transactions (coalescing) remains high regardless
* of items written per thread.
* - Provisions less shared memory temporary storage, but incurs larger
* latencies than the BLOCK_STORE_WARP_TRANSPOSE alternative.
*/
BLOCK_STORE_WARP_TRANSPOSE_TIMESLICED,
};
/**
* \brief The BlockStore class provides [<em>collective</em>](index.html#sec0) data movement methods for writing a [<em>blocked arrangement</em>](index.html#sec5sec3) of items partitioned across a CUDA thread block to a linear segment of memory. ![](block_store_logo.png)
* \ingroup BlockModule
* \ingroup UtilIo
*
* \tparam T The type of data to be written.
* \tparam BLOCK_DIM_X The thread block length in threads along the X dimension
* \tparam ITEMS_PER_THREAD The number of consecutive items partitioned onto each thread.
* \tparam ALGORITHM <b>[optional]</b> cub::BlockStoreAlgorithm tuning policy enumeration. default: cub::BLOCK_STORE_DIRECT.
* \tparam WARP_TIME_SLICING <b>[optional]</b> Whether or not only one warp's worth of shared memory should be allocated and time-sliced among block-warps during any load-related data transpositions (versus each warp having its own storage). (default: false)
* \tparam BLOCK_DIM_Y <b>[optional]</b> The thread block length in threads along the Y dimension (default: 1)
* \tparam BLOCK_DIM_Z <b>[optional]</b> The thread block length in threads along the Z dimension (default: 1)
* \tparam PTX_ARCH <b>[optional]</b> \ptxversion
*
* \par Overview
* - The BlockStore class provides a single data movement abstraction that can be specialized
* to implement different cub::BlockStoreAlgorithm strategies. This facilitates different
* performance policies for different architectures, data types, granularity sizes, etc.
* - BlockStore can be optionally specialized by different data movement strategies:
* -# <b>cub::BLOCK_STORE_DIRECT</b>. A [<em>blocked arrangement</em>](index.html#sec5sec3) of data is written
* directly to memory. [More...](\ref cub::BlockStoreAlgorithm)
* -# <b>cub::BLOCK_STORE_VECTORIZE</b>. A [<em>blocked arrangement</em>](index.html#sec5sec3)
* of data is written directly to memory using CUDA's built-in vectorized stores as a
* coalescing optimization. [More...](\ref cub::BlockStoreAlgorithm)
* -# <b>cub::BLOCK_STORE_TRANSPOSE</b>. A [<em>blocked arrangement</em>](index.html#sec5sec3)
* is locally transposed into a [<em>striped arrangement</em>](index.html#sec5sec3) which is
* then written to memory. [More...](\ref cub::BlockStoreAlgorithm)
* -# <b>cub::BLOCK_STORE_WARP_TRANSPOSE</b>. A [<em>blocked arrangement</em>](index.html#sec5sec3)
* is locally transposed into a [<em>warp-striped arrangement</em>](index.html#sec5sec3) which is
* then written to memory. [More...](\ref cub::BlockStoreAlgorithm)
* - \rowmajor
*
* \par A Simple Example
* \blockcollective{BlockStore}
* \par
* The code snippet below illustrates the storing of a "blocked" arrangement
* of 512 integers across 128 threads (where each thread owns 4 consecutive items)
* into a linear segment of memory. The store is specialized for \p BLOCK_STORE_WARP_TRANSPOSE,
* meaning items are locally reordered among threads so that memory references will be
* efficiently coalesced using a warp-striped access pattern.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_store.cuh>
*
* __global__ void ExampleKernel(int *d_data, ...)
* {
* // Specialize BlockStore for a 1D block of 128 threads owning 4 integer items each
* typedef cub::BlockStore<int, 128, 4, BLOCK_STORE_WARP_TRANSPOSE> BlockStore;
*
* // Allocate shared memory for BlockStore
* __shared__ typename BlockStore::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Store items to linear memory
* int thread_data[4];
* BlockStore(temp_storage).Store(d_data, thread_data);
*
* \endcode
* \par
* Suppose the set of \p thread_data across the block of threads is
* <tt>{ [0,1,2,3], [4,5,6,7], ..., [508,509,510,511] }</tt>.
* The output \p d_data will be <tt>0, 1, 2, 3, 4, 5, ...</tt>.
*
*/
template <
typename T,
int BLOCK_DIM_X,
int ITEMS_PER_THREAD,
BlockStoreAlgorithm ALGORITHM = BLOCK_STORE_DIRECT,
int BLOCK_DIM_Y = 1,
int BLOCK_DIM_Z = 1,
int PTX_ARCH = CUB_PTX_ARCH>
class BlockStore
{
private:
/******************************************************************************
* Constants and typed definitions
******************************************************************************/
/// Constants
enum
{
/// The thread block size in threads
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
};
/******************************************************************************
* Algorithmic variants
******************************************************************************/
/// Store helper
template <BlockStoreAlgorithm _POLICY, int DUMMY>
struct StoreInternal;
/**
* BLOCK_STORE_DIRECT specialization of store helper
*/
template <int DUMMY>
struct StoreInternal<BLOCK_STORE_DIRECT, DUMMY>
{
/// Shared memory storage layout type
typedef NullType TempStorage;
/// Linear thread-id
int linear_tid;
/// Constructor
__device__ __forceinline__ StoreInternal(
TempStorage &/*temp_storage*/,
int linear_tid)
:
linear_tid(linear_tid)
{}
/// Store items into a linear segment of memory
template <typename OutputIteratorT>
__device__ __forceinline__ void Store(
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store
{
StoreDirectBlocked(linear_tid, block_itr, items);
}
/// Store items into a linear segment of memory, guarded by range
template <typename OutputIteratorT>
__device__ __forceinline__ void Store(
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store
int valid_items) ///< [in] Number of valid items to write
{
StoreDirectBlocked(linear_tid, block_itr, items, valid_items);
}
};
/**
* BLOCK_STORE_VECTORIZE specialization of store helper
*/
template <int DUMMY>
struct StoreInternal<BLOCK_STORE_VECTORIZE, DUMMY>
{
/// Shared memory storage layout type
typedef NullType TempStorage;
/// Linear thread-id
int linear_tid;
/// Constructor
__device__ __forceinline__ StoreInternal(
TempStorage &/*temp_storage*/,
int linear_tid)
:
linear_tid(linear_tid)
{}
/// Store items into a linear segment of memory, specialized for native pointer types (attempts vectorization)
__device__ __forceinline__ void Store(
T *block_ptr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store
{
StoreDirectBlockedVectorized(linear_tid, block_ptr, items);
}
/// Store items into a linear segment of memory, specialized for opaque input iterators (skips vectorization)
template <typename OutputIteratorT>
__device__ __forceinline__ void Store(
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store
{
StoreDirectBlocked(linear_tid, block_itr, items);
}
/// Store items into a linear segment of memory, guarded by range
template <typename OutputIteratorT>
__device__ __forceinline__ void Store(
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store
int valid_items) ///< [in] Number of valid items to write
{
StoreDirectBlocked(linear_tid, block_itr, items, valid_items);
}
};
/**
* BLOCK_STORE_TRANSPOSE specialization of store helper
*/
template <int DUMMY>
struct StoreInternal<BLOCK_STORE_TRANSPOSE, DUMMY>
{
// BlockExchange utility type for keys
typedef BlockExchange<T, BLOCK_DIM_X, ITEMS_PER_THREAD, false, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> BlockExchange;
/// Shared memory storage layout type
struct _TempStorage : BlockExchange::TempStorage
{
/// Temporary storage for partially-full block guard
volatile int valid_items;
};
/// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
/// Thread reference to shared storage
_TempStorage &temp_storage;
/// Linear thread-id
int linear_tid;
/// Constructor
__device__ __forceinline__ StoreInternal(
TempStorage &temp_storage,
int linear_tid)
:
temp_storage(temp_storage.Alias()),
linear_tid(linear_tid)
{}
/// Store items into a linear segment of memory
template <typename OutputIteratorT>
__device__ __forceinline__ void Store(
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store
{
BlockExchange(temp_storage).BlockedToStriped(items);
StoreDirectStriped<BLOCK_THREADS>(linear_tid, block_itr, items);
}
/// Store items into a linear segment of memory, guarded by range
template <typename OutputIteratorT>
__device__ __forceinline__ void Store(
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store
int valid_items) ///< [in] Number of valid items to write
{
BlockExchange(temp_storage).BlockedToStriped(items);
if (linear_tid == 0)
temp_storage.valid_items = valid_items; // Move through volatile smem as a workaround to prevent RF spilling on subsequent loads
CTA_SYNC();
StoreDirectStriped<BLOCK_THREADS>(linear_tid, block_itr, items, temp_storage.valid_items);
}
};
/**
* BLOCK_STORE_WARP_TRANSPOSE specialization of store helper
*/
template <int DUMMY>
struct StoreInternal<BLOCK_STORE_WARP_TRANSPOSE, DUMMY>
{
enum
{
WARP_THREADS = CUB_WARP_THREADS(PTX_ARCH)
};
// Assert BLOCK_THREADS must be a multiple of WARP_THREADS
CUB_STATIC_ASSERT((BLOCK_THREADS % WARP_THREADS == 0), "BLOCK_THREADS must be a multiple of WARP_THREADS");
// BlockExchange utility type for keys
typedef BlockExchange<T, BLOCK_DIM_X, ITEMS_PER_THREAD, false, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> BlockExchange;
/// Shared memory storage layout type
struct _TempStorage : BlockExchange::TempStorage
{
/// Temporary storage for partially-full block guard
volatile int valid_items;
};
/// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
/// Thread reference to shared storage
_TempStorage &temp_storage;
/// Linear thread-id
int linear_tid;
/// Constructor
__device__ __forceinline__ StoreInternal(
TempStorage &temp_storage,
int linear_tid)
:
temp_storage(temp_storage.Alias()),
linear_tid(linear_tid)
{}
/// Store items into a linear segment of memory
template <typename OutputIteratorT>
__device__ __forceinline__ void Store(
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store
{
BlockExchange(temp_storage).BlockedToWarpStriped(items);
StoreDirectWarpStriped(linear_tid, block_itr, items);
}
/// Store items into a linear segment of memory, guarded by range
template <typename OutputIteratorT>
__device__ __forceinline__ void Store(
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store
int valid_items) ///< [in] Number of valid items to write
{
BlockExchange(temp_storage).BlockedToWarpStriped(items);
if (linear_tid == 0)
temp_storage.valid_items = valid_items; // Move through volatile smem as a workaround to prevent RF spilling on subsequent loads
CTA_SYNC();
StoreDirectWarpStriped(linear_tid, block_itr, items, temp_storage.valid_items);
}
};
/**
* BLOCK_STORE_WARP_TRANSPOSE_TIMESLICED specialization of store helper
*/
template <int DUMMY>
struct StoreInternal<BLOCK_STORE_WARP_TRANSPOSE_TIMESLICED, DUMMY>
{
enum
{
WARP_THREADS = CUB_WARP_THREADS(PTX_ARCH)
};
// Assert BLOCK_THREADS must be a multiple of WARP_THREADS
CUB_STATIC_ASSERT((BLOCK_THREADS % WARP_THREADS == 0), "BLOCK_THREADS must be a multiple of WARP_THREADS");
// BlockExchange utility type for keys
typedef BlockExchange<T, BLOCK_DIM_X, ITEMS_PER_THREAD, true, BLOCK_DIM_Y, BLOCK_DIM_Z, PTX_ARCH> BlockExchange;
/// Shared memory storage layout type
struct _TempStorage : BlockExchange::TempStorage
{
/// Temporary storage for partially-full block guard
volatile int valid_items;
};
/// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
/// Thread reference to shared storage
_TempStorage &temp_storage;
/// Linear thread-id
int linear_tid;
/// Constructor
__device__ __forceinline__ StoreInternal(
TempStorage &temp_storage,
int linear_tid)
:
temp_storage(temp_storage.Alias()),
linear_tid(linear_tid)
{}
/// Store items into a linear segment of memory
template <typename OutputIteratorT>
__device__ __forceinline__ void Store(
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store
{
BlockExchange(temp_storage).BlockedToWarpStriped(items);
StoreDirectWarpStriped(linear_tid, block_itr, items);
}
/// Store items into a linear segment of memory, guarded by range
template <typename OutputIteratorT>
__device__ __forceinline__ void Store(
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store
int valid_items) ///< [in] Number of valid items to write
{
BlockExchange(temp_storage).BlockedToWarpStriped(items);
if (linear_tid == 0)
temp_storage.valid_items = valid_items; // Move through volatile smem as a workaround to prevent RF spilling on subsequent loads
CTA_SYNC();
StoreDirectWarpStriped(linear_tid, block_itr, items, temp_storage.valid_items);
}
};
/******************************************************************************
* Type definitions
******************************************************************************/
/// Internal load implementation to use
typedef StoreInternal<ALGORITHM, 0> InternalStore;
/// Shared memory storage layout type
typedef typename InternalStore::TempStorage _TempStorage;
/******************************************************************************
* Utility methods
******************************************************************************/
/// Internal storage allocator
__device__ __forceinline__ _TempStorage& PrivateStorage()
{
__shared__ _TempStorage private_storage;
return private_storage;
}
/******************************************************************************
* Thread fields
******************************************************************************/
/// Thread reference to shared storage
_TempStorage &temp_storage;
/// Linear thread-id
int linear_tid;
public:
/// \smemstorage{BlockStore}
struct TempStorage : Uninitialized<_TempStorage> {};
/******************************************************************//**
* \name Collective constructors
*********************************************************************/
//@{
/**
* \brief Collective constructor using a private static allocation of shared memory as temporary storage.
*/
__device__ __forceinline__ BlockStore()
:
temp_storage(PrivateStorage()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
/**
* \brief Collective constructor using the specified memory allocation as temporary storage.
*/
__device__ __forceinline__ BlockStore(
TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage
:
temp_storage(temp_storage.Alias()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
//@} end member group
/******************************************************************//**
* \name Data movement
*********************************************************************/
//@{
/**
* \brief Store items into a linear segment of memory.
*
* \par
* - \blocked
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates the storing of a "blocked" arrangement
* of 512 integers across 128 threads (where each thread owns 4 consecutive items)
* into a linear segment of memory. The store is specialized for \p BLOCK_STORE_WARP_TRANSPOSE,
* meaning items are locally reordered among threads so that memory references will be
* efficiently coalesced using a warp-striped access pattern.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_store.cuh>
*
* __global__ void ExampleKernel(int *d_data, ...)
* {
* // Specialize BlockStore for a 1D block of 128 threads owning 4 integer items each
* typedef cub::BlockStore<int, 128, 4, BLOCK_STORE_WARP_TRANSPOSE> BlockStore;
*
* // Allocate shared memory for BlockStore
* __shared__ typename BlockStore::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Store items to linear memory
* int thread_data[4];
* BlockStore(temp_storage).Store(d_data, thread_data);
*
* \endcode
* \par
* Suppose the set of \p thread_data across the block of threads is
* <tt>{ [0,1,2,3], [4,5,6,7], ..., [508,509,510,511] }</tt>.
* The output \p d_data will be <tt>0, 1, 2, 3, 4, 5, ...</tt>.
*
*/
template <typename OutputIteratorT>
__device__ __forceinline__ void Store(
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD]) ///< [in] Data to store
{
InternalStore(temp_storage, linear_tid).Store(block_itr, items);
}
/**
* \brief Store items into a linear segment of memory, guarded by range.
*
* \par
* - \blocked
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates the guarded storing of a "blocked" arrangement
* of 512 integers across 128 threads (where each thread owns 4 consecutive items)
* into a linear segment of memory. The store is specialized for \p BLOCK_STORE_WARP_TRANSPOSE,
* meaning items are locally reordered among threads so that memory references will be
* efficiently coalesced using a warp-striped access pattern.
* \par
* \code
* #include <cub/cub.cuh> // or equivalently <cub/block/block_store.cuh>
*
* __global__ void ExampleKernel(int *d_data, int valid_items, ...)
* {
* // Specialize BlockStore for a 1D block of 128 threads owning 4 integer items each
* typedef cub::BlockStore<int, 128, 4, BLOCK_STORE_WARP_TRANSPOSE> BlockStore;
*
* // Allocate shared memory for BlockStore
* __shared__ typename BlockStore::TempStorage temp_storage;
*
* // Obtain a segment of consecutive items that are blocked across threads
* int thread_data[4];
* ...
*
* // Store items to linear memory
* int thread_data[4];
* BlockStore(temp_storage).Store(d_data, thread_data, valid_items);
*
* \endcode
* \par
* Suppose the set of \p thread_data across the block of threads is
* <tt>{ [0,1,2,3], [4,5,6,7], ..., [508,509,510,511] }</tt> and \p valid_items is \p 5.
* The output \p d_data will be <tt>0, 1, 2, 3, 4, ?, ?, ?, ...</tt>, with
* only the first two threads being unmasked to store portions of valid data.
*
*/
template <typename OutputIteratorT>
__device__ __forceinline__ void Store(
OutputIteratorT block_itr, ///< [in] The thread block's base output iterator for storing to
T (&items)[ITEMS_PER_THREAD], ///< [in] Data to store
int valid_items) ///< [in] Number of valid items to write
{
InternalStore(temp_storage, linear_tid).Store(block_itr, items, valid_items);
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)