Blame view
tools/cub-1.8.0/cub/block/specializations/block_reduce_raking.cuh
9.5 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /** * \file * cub::BlockReduceRaking provides raking-based methods of parallel reduction across a CUDA thread block. Supports non-commutative reduction operators. */ #pragma once #include "../../block/block_raking_layout.cuh" #include "../../warp/warp_reduce.cuh" #include "../../thread/thread_reduce.cuh" #include "../../util_ptx.cuh" #include "../../util_namespace.cuh" /// Optional outer namespace(s) CUB_NS_PREFIX /// CUB namespace namespace cub { /** * \brief BlockReduceRaking provides raking-based methods of parallel reduction across a CUDA thread block. Supports non-commutative reduction operators. * * Supports non-commutative binary reduction operators. Unlike commutative * reduction operators (e.g., addition), the application of a non-commutative * reduction operator (e.g, string concatenation) across a sequence of inputs must * honor the relative ordering of items and partial reductions when applying the * reduction operator. * * Compared to the implementation of BlockReduceRaking (which does not support * non-commutative operators), this implementation requires a few extra * rounds of inter-thread communication. */ template < typename T, ///< Data type being reduced int BLOCK_DIM_X, ///< The thread block length in threads along the X dimension int BLOCK_DIM_Y, ///< The thread block length in threads along the Y dimension int BLOCK_DIM_Z, ///< The thread block length in threads along the Z dimension int PTX_ARCH> ///< The PTX compute capability for which to to specialize this collective struct BlockReduceRaking { /// Constants enum { /// The thread block size in threads BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z, }; /// Layout type for padded thread block raking grid typedef BlockRakingLayout<T, BLOCK_THREADS, PTX_ARCH> BlockRakingLayout; /// WarpReduce utility type typedef typename WarpReduce<T, BlockRakingLayout::RAKING_THREADS, PTX_ARCH>::InternalWarpReduce WarpReduce; /// Constants enum { /// Number of raking threads RAKING_THREADS = BlockRakingLayout::RAKING_THREADS, /// Number of raking elements per warp synchronous raking thread SEGMENT_LENGTH = BlockRakingLayout::SEGMENT_LENGTH, /// Cooperative work can be entirely warp synchronous WARP_SYNCHRONOUS = (RAKING_THREADS == BLOCK_THREADS), /// Whether or not warp-synchronous reduction should be unguarded (i.e., the warp-reduction elements is a power of two WARP_SYNCHRONOUS_UNGUARDED = PowerOfTwo<RAKING_THREADS>::VALUE, /// Whether or not accesses into smem are unguarded RAKING_UNGUARDED = BlockRakingLayout::UNGUARDED, }; /// Shared memory storage layout type union _TempStorage { typename WarpReduce::TempStorage warp_storage; ///< Storage for warp-synchronous reduction typename BlockRakingLayout::TempStorage raking_grid; ///< Padded thread block raking grid }; /// Alias wrapper allowing storage to be unioned struct TempStorage : Uninitialized<_TempStorage> {}; // Thread fields _TempStorage &temp_storage; unsigned int linear_tid; /// Constructor __device__ __forceinline__ BlockReduceRaking( TempStorage &temp_storage) : temp_storage(temp_storage.Alias()), linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z)) {} template <bool IS_FULL_TILE, typename ReductionOp, int ITERATION> __device__ __forceinline__ T RakingReduction( ReductionOp reduction_op, ///< [in] Binary scan operator T *raking_segment, T partial, ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items int num_valid, ///< [in] Number of valid elements (may be less than BLOCK_THREADS) Int2Type<ITERATION> /*iteration*/) { // Update partial if addend is in range if ((IS_FULL_TILE && RAKING_UNGUARDED) || ((linear_tid * SEGMENT_LENGTH) + ITERATION < num_valid)) { T addend = raking_segment[ITERATION]; partial = reduction_op(partial, addend); } return RakingReduction<IS_FULL_TILE>(reduction_op, raking_segment, partial, num_valid, Int2Type<ITERATION + 1>()); } template <bool IS_FULL_TILE, typename ReductionOp> __device__ __forceinline__ T RakingReduction( ReductionOp /*reduction_op*/, ///< [in] Binary scan operator T * /*raking_segment*/, T partial, ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items int /*num_valid*/, ///< [in] Number of valid elements (may be less than BLOCK_THREADS) Int2Type<SEGMENT_LENGTH> /*iteration*/) { return partial; } /// Computes a thread block-wide reduction using the specified reduction operator. The first num_valid threads each contribute one reduction partial. The return value is only valid for thread<sub>0</sub>. template < bool IS_FULL_TILE, typename ReductionOp> __device__ __forceinline__ T Reduce( T partial, ///< [in] Calling thread's input partial reductions int num_valid, ///< [in] Number of valid elements (may be less than BLOCK_THREADS) ReductionOp reduction_op) ///< [in] Binary reduction operator { if (WARP_SYNCHRONOUS) { // Short-circuit directly to warp synchronous reduction (unguarded if active threads is a power-of-two) partial = WarpReduce(temp_storage.warp_storage).template Reduce<IS_FULL_TILE>( partial, num_valid, reduction_op); } else { // Place partial into shared memory grid. *BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid) = partial; CTA_SYNC(); // Reduce parallelism to one warp if (linear_tid < RAKING_THREADS) { // Raking reduction in grid T *raking_segment = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid); partial = raking_segment[0]; partial = RakingReduction<IS_FULL_TILE>(reduction_op, raking_segment, partial, num_valid, Int2Type<1>()); int valid_raking_threads = (IS_FULL_TILE) ? RAKING_THREADS : (num_valid + SEGMENT_LENGTH - 1) / SEGMENT_LENGTH; partial = WarpReduce(temp_storage.warp_storage).template Reduce<IS_FULL_TILE && RAKING_UNGUARDED>( partial, valid_raking_threads, reduction_op); } } return partial; } /// Computes a thread block-wide reduction using addition (+) as the reduction operator. The first num_valid threads each contribute one reduction partial. The return value is only valid for thread<sub>0</sub>. template <bool IS_FULL_TILE> __device__ __forceinline__ T Sum( T partial, ///< [in] Calling thread's input partial reductions int num_valid) ///< [in] Number of valid elements (may be less than BLOCK_THREADS) { cub::Sum reduction_op; return Reduce<IS_FULL_TILE>(partial, num_valid, reduction_op); } }; } // CUB namespace CUB_NS_POSTFIX // Optional outer namespace(s) |