block_reduce_raking.cuh
9.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::BlockReduceRaking provides raking-based methods of parallel reduction across a CUDA thread block. Supports non-commutative reduction operators.
*/
#pragma once
#include "../../block/block_raking_layout.cuh"
#include "../../warp/warp_reduce.cuh"
#include "../../thread/thread_reduce.cuh"
#include "../../util_ptx.cuh"
#include "../../util_namespace.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/**
* \brief BlockReduceRaking provides raking-based methods of parallel reduction across a CUDA thread block. Supports non-commutative reduction operators.
*
* Supports non-commutative binary reduction operators. Unlike commutative
* reduction operators (e.g., addition), the application of a non-commutative
* reduction operator (e.g, string concatenation) across a sequence of inputs must
* honor the relative ordering of items and partial reductions when applying the
* reduction operator.
*
* Compared to the implementation of BlockReduceRaking (which does not support
* non-commutative operators), this implementation requires a few extra
* rounds of inter-thread communication.
*/
template <
typename T, ///< Data type being reduced
int BLOCK_DIM_X, ///< The thread block length in threads along the X dimension
int BLOCK_DIM_Y, ///< The thread block length in threads along the Y dimension
int BLOCK_DIM_Z, ///< The thread block length in threads along the Z dimension
int PTX_ARCH> ///< The PTX compute capability for which to to specialize this collective
struct BlockReduceRaking
{
/// Constants
enum
{
/// The thread block size in threads
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
};
/// Layout type for padded thread block raking grid
typedef BlockRakingLayout<T, BLOCK_THREADS, PTX_ARCH> BlockRakingLayout;
/// WarpReduce utility type
typedef typename WarpReduce<T, BlockRakingLayout::RAKING_THREADS, PTX_ARCH>::InternalWarpReduce WarpReduce;
/// Constants
enum
{
/// Number of raking threads
RAKING_THREADS = BlockRakingLayout::RAKING_THREADS,
/// Number of raking elements per warp synchronous raking thread
SEGMENT_LENGTH = BlockRakingLayout::SEGMENT_LENGTH,
/// Cooperative work can be entirely warp synchronous
WARP_SYNCHRONOUS = (RAKING_THREADS == BLOCK_THREADS),
/// Whether or not warp-synchronous reduction should be unguarded (i.e., the warp-reduction elements is a power of two
WARP_SYNCHRONOUS_UNGUARDED = PowerOfTwo<RAKING_THREADS>::VALUE,
/// Whether or not accesses into smem are unguarded
RAKING_UNGUARDED = BlockRakingLayout::UNGUARDED,
};
/// Shared memory storage layout type
union _TempStorage
{
typename WarpReduce::TempStorage warp_storage; ///< Storage for warp-synchronous reduction
typename BlockRakingLayout::TempStorage raking_grid; ///< Padded thread block raking grid
};
/// Alias wrapper allowing storage to be unioned
struct TempStorage : Uninitialized<_TempStorage> {};
// Thread fields
_TempStorage &temp_storage;
unsigned int linear_tid;
/// Constructor
__device__ __forceinline__ BlockReduceRaking(
TempStorage &temp_storage)
:
temp_storage(temp_storage.Alias()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
template <bool IS_FULL_TILE, typename ReductionOp, int ITERATION>
__device__ __forceinline__ T RakingReduction(
ReductionOp reduction_op, ///< [in] Binary scan operator
T *raking_segment,
T partial, ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items
int num_valid, ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
Int2Type<ITERATION> /*iteration*/)
{
// Update partial if addend is in range
if ((IS_FULL_TILE && RAKING_UNGUARDED) || ((linear_tid * SEGMENT_LENGTH) + ITERATION < num_valid))
{
T addend = raking_segment[ITERATION];
partial = reduction_op(partial, addend);
}
return RakingReduction<IS_FULL_TILE>(reduction_op, raking_segment, partial, num_valid, Int2Type<ITERATION + 1>());
}
template <bool IS_FULL_TILE, typename ReductionOp>
__device__ __forceinline__ T RakingReduction(
ReductionOp /*reduction_op*/, ///< [in] Binary scan operator
T * /*raking_segment*/,
T partial, ///< [in] <b>[<em>lane</em><sub>0</sub> only]</b> Warp-wide aggregate reduction of input items
int /*num_valid*/, ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
Int2Type<SEGMENT_LENGTH> /*iteration*/)
{
return partial;
}
/// Computes a thread block-wide reduction using the specified reduction operator. The first num_valid threads each contribute one reduction partial. The return value is only valid for thread<sub>0</sub>.
template <
bool IS_FULL_TILE,
typename ReductionOp>
__device__ __forceinline__ T Reduce(
T partial, ///< [in] Calling thread's input partial reductions
int num_valid, ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
ReductionOp reduction_op) ///< [in] Binary reduction operator
{
if (WARP_SYNCHRONOUS)
{
// Short-circuit directly to warp synchronous reduction (unguarded if active threads is a power-of-two)
partial = WarpReduce(temp_storage.warp_storage).template Reduce<IS_FULL_TILE>(
partial,
num_valid,
reduction_op);
}
else
{
// Place partial into shared memory grid.
*BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid) = partial;
CTA_SYNC();
// Reduce parallelism to one warp
if (linear_tid < RAKING_THREADS)
{
// Raking reduction in grid
T *raking_segment = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
partial = raking_segment[0];
partial = RakingReduction<IS_FULL_TILE>(reduction_op, raking_segment, partial, num_valid, Int2Type<1>());
int valid_raking_threads = (IS_FULL_TILE) ?
RAKING_THREADS :
(num_valid + SEGMENT_LENGTH - 1) / SEGMENT_LENGTH;
partial = WarpReduce(temp_storage.warp_storage).template Reduce<IS_FULL_TILE && RAKING_UNGUARDED>(
partial,
valid_raking_threads,
reduction_op);
}
}
return partial;
}
/// Computes a thread block-wide reduction using addition (+) as the reduction operator. The first num_valid threads each contribute one reduction partial. The return value is only valid for thread<sub>0</sub>.
template <bool IS_FULL_TILE>
__device__ __forceinline__ T Sum(
T partial, ///< [in] Calling thread's input partial reductions
int num_valid) ///< [in] Number of valid elements (may be less than BLOCK_THREADS)
{
cub::Sum reduction_op;
return Reduce<IS_FULL_TILE>(partial, num_valid, reduction_op);
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)