run_blstm_7b.sh
11.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#!/bin/bash
set -e
# based on run_blstm_6h.sh in fisher_swbd recipe
# configs for 'chain'
stage=11 # assuming you already ran the xent systems
train_stage=-10
get_egs_stage=-10
dir=exp/chain/blstm_7b
decode_iter=
# training options
num_epochs=4
remove_egs=false
common_egs_dir=
num_data_reps=3
min_seg_len=
xent_regularize=0.1
chunk_width=150
chunk_left_context=40
chunk_right_context=40
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
ali_dir=exp/tri5a_rvb_ali
treedir=exp/chain/tri6_tree_11000
lang=data/lang_chain
# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet3 setup, and you can skip them by setting "--stage 8" if you have already
# run those things.
local/nnet3/run_ivector_common.sh --stage $stage --num-data-reps 3|| exit 1;
if [ $stage -le 7 ]; then
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
rm -rf $lang
cp -r data/lang $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi
if [ $stage -le 8 ]; then
# Build a tree using our new topology.
# we build the tree using clean features (data/train) rather than
# the augmented features (data/train_rvb) to get better alignments
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
--cmd "$train_cmd" 11000 data/train $lang exp/tri5a $treedir
fi
if [ -z $min_seg_len ]; then
min_seg_len=$(python -c "print ($chunk_width+5)/100.0")
fi
if [ $stage -le 9 ]; then
[ -d data/train_rvb_min${min_seg_len}_hires ] && rm -rf data/train_rvb_min${min_seg_len}_hires
steps/cleanup/combine_short_segments.py --minimum-duration $min_seg_len \
--input-data-dir data/train_rvb_hires \
--output-data-dir data/train_rvb_min${min_seg_len}_hires
#extract ivectors for the new data
steps/online/nnet2/copy_data_dir.sh --utts-per-spk-max 2 \
data/train_rvb_min${min_seg_len}_hires data/train_rvb_min${min_seg_len}_hires_max2
ivectordir=exp/nnet3/ivectors_train_min${min_seg_len}
if [[ $(hostname -f) == *.clsp.jhu.edu ]]; then # this shows how you can split across multiple file-systems.
utils/create_split_dir.pl /export/b0{1,2,3,4}/$USER/kaldi-data/egs/aspire/s5/$ivectordir/storage $ivectordir/storage
fi
steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 200 \
data/train_rvb_min${min_seg_len}_hires_max2 \
exp/nnet3/extractor $ivectordir || exit 1;
# combine the non-hires features for alignments/lattices
[ -d data/train_min${min_seg_len} ] && rm -r data/train_min${min_seg_len};
utt_prefix="THISISUNIQUESTRING_"
spk_prefix="THISISUNIQUESTRING_"
utils/copy_data_dir.sh --spk-prefix "$spk_prefix" --utt-prefix "$utt_prefix" \
data/train data/train_temp_for_lats
steps/cleanup/combine_short_segments.py --minimum-duration $min_seg_len \
--input-data-dir data/train_temp_for_lats \
--output-data-dir data/train_min${min_seg_len}
fi
if [ $stage -le 10 ]; then
# Get the alignments as lattices (gives the chain training more freedom).
# use the same num-jobs as the alignments
nj=200
lat_dir=exp/tri5a_min${min_seg_len}_lats
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/train_min${min_seg_len} \
data/lang exp/tri5a $lat_dir
rm -f $lat_dir/fsts.*.gz # save space
rvb_lat_dir=exp/tri5a_rvb_min${min_seg_len}_lats
mkdir -p $rvb_lat_dir/temp/
lattice-copy "ark:gunzip -c $lat_dir/lat.*.gz |" ark,scp:$rvb_lat_dir/temp/lats.ark,$rvb_lat_dir/temp/lats.scp
# copy the lattices for the reverberated data
rm -f $rvb_lat_dir/temp/combined_lats.scp
touch $rvb_lat_dir/temp/combined_lats.scp
for i in `seq 1 $num_data_reps`; do
cat $rvb_lat_dir/temp/lats.scp | sed -e "s/THISISUNIQUESTRING/rev${i}/g" >> $rvb_lat_dir/temp/combined_lats.scp
done
sort -u $rvb_lat_dir/temp/combined_lats.scp > $rvb_lat_dir/temp/combined_lats_sorted.scp
lattice-copy scp:$rvb_lat_dir/temp/combined_lats_sorted.scp "ark:|gzip -c >$rvb_lat_dir/lat.1.gz" || exit 1;
echo "1" > $rvb_lat_dir/num_jobs
# copy other files from original lattice dir
for f in cmvn_opts final.mdl splice_opts tree; do
cp $lat_dir/$f $rvb_lat_dir/$f
done
fi
if [ $stage -le 11 ]; then
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(tree-info $treedir/tree | grep num-pdfs | awk '{print $2}')
[ -z $num_targets ] && { echo "$0: error getting num-targets"; exit 1; }
learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
lstm_opts="decay-time=20"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
# the first splicing is moved before the lda layer, so no splicing here
# check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults
fast-lstmp-layer name=blstm1-forward input=lda cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts
fast-lstmp-layer name=blstm1-backward input=lda cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=3 $lstm_opts
fast-lstmp-layer name=blstm2-forward input=Append(blstm1-forward, blstm1-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts
fast-lstmp-layer name=blstm2-backward input=Append(blstm1-forward, blstm1-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=3 $lstm_opts
fast-lstmp-layer name=blstm3-forward input=Append(blstm2-forward, blstm2-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $lstm_opts
fast-lstmp-layer name=blstm3-backward input=Append(blstm2-forward, blstm2-backward) cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=3 $lstm_opts
## adding the layers for chain branch
output-layer name=output input=Append(blstm3-forward, blstm3-backward) output-delay=0 include-log-softmax=false dim=$num_targets max-change=1.5
# adding the layers for xent branch
# This block prints the configs for a separate output that will be
# trained with a cross-entropy objective in the 'chain' models... this
# has the effect of regularizing the hidden parts of the model. we use
# 0.5 / args.xent_regularize as the learning rate factor- the factor of
# 0.5 / args.xent_regularize is suitable as it means the xent
# final-layer learns at a rate independent of the regularization
# constant; and the 0.5 was tuned so as to make the relative progress
# similar in the xent and regular final layers.
output-layer name=output-xent input=Append(blstm3-forward, blstm3-backward) output-delay=0 dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 12 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/aspire-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
fi
touch $dir/egs/.nodelete # keep egs around when that run dies.
steps/nnet3/chain/train.py --stage $train_stage \
--egs.dir "$common_egs_dir" \
--cmd "$decode_cmd" \
--feat.online-ivector-dir exp/nnet3/ivectors_train_min${min_seg_len} \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.00005 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--trainer.num-chunk-per-minibatch 64 \
--trainer.max-param-change 1.414 \
--egs.stage $get_egs_stage \
--egs.opts "--frames-overlap-per-eg 0" \
--egs.chunk-width $chunk_width \
--egs.chunk-left-context $chunk_left_context \
--egs.chunk-right-context $chunk_right_context \
--egs.chunk-left-context-initial=0 \
--egs.chunk-right-context-final=0 \
--egs.dir "$common_egs_dir" \
--trainer.frames-per-iter 1500000 \
--trainer.num-epochs $num_epochs \
--trainer.optimization.num-jobs-initial 3 \
--trainer.optimization.num-jobs-final 16 \
--trainer.optimization.initial-effective-lrate 0.001 \
--trainer.optimization.final-effective-lrate 0.0001 \
--trainer.optimization.shrink-value 0.99 \
--trainer.optimization.momentum 0.0 \
--trainer.deriv-truncate-margin 8 \
--cleanup.remove-egs $remove_egs \
--feat-dir data/train_rvb_min${min_seg_len}_hires \
--tree-dir $treedir \
--lat-dir exp/tri5a_rvb_min${min_seg_len}_lats \
--dir $dir || exit 1;
fi
if [ $stage -le 13 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 data/lang_pp_test $dir $dir/graph_pp
fi
if [ $stage -le 14 ]; then
extra_left_context=$[$chunk_left_context+10]
extra_right_context=$[$chunk_right_context+10]
# %WER 25.5 | 2120 27212 | 81.0 11.9 7.1 6.5 25.5 75.0 | -1.022 | exp/chain/blstm_asp2/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iterfinal_pp_fg/score_8/penalty_0.5/ctm.filt.filt.sys
local/nnet3/decode.sh --stage 4 --decode-num-jobs 30 --affix "v7" \
--extra-left-context $extra_left_context \
--extra-right-context $extra_right_context \
--extra-left-context-initial 0 \
--extra-right-context-final 0 \
--frames-per-chunk $chunk_width \
--acwt 1.0 --post-decode-acwt 10.0 \
--window 10 --overlap 5 \
--sub-speaker-frames 6000 --max-count 75 --ivector-scale 0.75 \
--pass2-decode-opts "--min-active 1000" \
dev_aspire data/lang $dir/graph_pp $dir
fi
exit 0;
#online decoding is not yet supported with RNN AMs. See https://github.com/kaldi-asr/kaldi/issues/1091
# %WER 28.0 | 2120 27217 | 78.6 13.3 8.1 6.7 28.0 77.0 | -0.852 | exp/chain/blstm_asp2/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter600_pp_fg/score_9/penalty_0.25/ctm.filt.filt.sys
# %WER 27.1 | 2120 27217 | 78.9 13.1 7.9 6.0 27.1 75.8 | -0.944 | exp/chain/blstm_asp2/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter700_pp_fg/score_8/penalty_0.5/ctm.filt.filt.sys
# %WER 26.9 | 2120 27218 | 79.7 12.1 8.2 6.6 26.9 76.3 | -0.839 | exp/chain/blstm_asp2/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter1000_pp_fg/score_10/penalty_0.0/ctm.filt.filt.sys
# %WER 26.6 | 2120 27220 | 80.2 12.7 7.1 6.8 26.6 76.6 | -1.035 | exp/chain/blstm_asp2/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter1200_pp_fg/score_8/penalty_0.25/ctm.filt.filt.sys
# %WER 26.3 | 2120 27223 | 80.6 12.3 7.2 6.9 26.3 76.8 | -0.978 | exp/chain/blstm_asp2/decode_dev_aspire_whole_uniformsegmented_win10_over5_v7_iter1400_pp_fg/score_9/penalty_0.0/ctm.filt.filt.sys