run_tdnn_lstm_1a.sh
11.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/bin/bash
set -e
# based on run_tdnn_7b.sh in the swbd recipe
# System exp/chain/tdnn_lstm_1a
# WER on dev_aspire (fg) 22.9
# Final train prob -0.118
# Final valid prob -0.123
# Final train prob (xent) -1.243
# Final valid prob (xent) -1.2350
# Num-parameters 49945168
# configs for 'chain'
stage=0
train_stage=-10
get_egs_stage=-10
test_stage=1
nj=70
tdnn_affix=_1a
hidden_dim=1024
cell_dim=1024
projection_dim=256
# training options
minibatch_size=64,32
chunk_left_context=40
chunk_right_context=0
dropout_schedule='0,0@0.20,0.3@0.50,0'
xent_regularize=0.025
label_delay=5
# decode options
extra_left_context=50
extra_right_context=0
# training options
num_epochs=4
remove_egs=false
common_egs_dir=
num_data_reps=3
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
train_set=train_rvb
gmm_dir=exp/tri5a # used to get training lattices (for chain supervision)
treedir=exp/chain/tree_bi_a
lat_dir=exp/chain/tri5a_${train_set}_lats # training lattices directory
dir=exp/chain/tdnn_lstm${tdnn_affix}
train_data_dir=data/${train_set}_hires
train_ivector_dir=exp/nnet3/ivectors_${train_set}
lang=data/lang_chain
# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet3 setup, and you can skip them by setting "--stage 8" if you have already
# run those things.
local/nnet3/run_ivector_common.sh --stage $stage --num-data-reps 3 || exit 1
mkdir -p $dir
norvb_lat_dir=exp/chain/tri5a_train_lats
if [ $stage -le 7 ]; then
# Get the alignments as lattices (gives the chain training more freedom).
# use the same num-jobs as the alignments
steps/align_fmllr_lats.sh --nj 30 --cmd "$train_cmd" \
--generate-ali-from-lats true data/train \
data/lang $gmm_dir $norvb_lat_dir || exit 1;
rm $norvb_lat_dir/fsts.*.gz # save space
fi
if [ $stage -le 8 ]; then
mkdir -p $lat_dir
utils/split_data.sh data/${train_set} $nj
for n in `seq $nj`; do
awk '{print $1}' data/${train_set}/split$nj/$n/utt2spk | \
perl -ane 's/rev[1-3]-//g' > $lat_dir/uttlist.$n.$nj
done
rm -f $lat_dir/lat_tmp.*.{ark,scp} 2>/dev/null
norvb_nj=$(cat $norvb_lat_dir/num_jobs)
$train_cmd JOB=1:$norvb_nj $lat_dir/log/copy_lattices.JOB.log \
lattice-copy "ark:gunzip -c $norvb_lat_dir/lat.JOB.gz |" \
ark,scp:$lat_dir/lat_tmp.JOB.ark,$lat_dir/lat_tmp.JOB.scp || exit 1
for n in `seq 3`; do
cat $lat_dir/lat_tmp.*.scp | awk -v n=$n '{print "rev"n"-"$1" "$2}'
done > $lat_dir/lat_rvb.scp
$train_cmd JOB=1:$nj $lat_dir/log/copy_rvb_lattices.JOB.log \
lattice-copy \
"scp:utils/filter_scp.pl data/${train_set}/split$nj/JOB/utt2spk $lat_dir/lat_rvb.scp |" \
"ark:| gzip -c > $lat_dir/lat.JOB.gz" || exit 1
rm $lat_dir/lat_tmp.* $lat_dir/lat_rvb.scp
echo $nj > $lat_dir/num_jobs
for f in cmvn_opts final.mdl splice_opts tree; do
cp $norvb_lat_dir/$f $lat_dir/$f
done
fi
if [ $stage -le 10 ]; then
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
rm -rf $lang
cp -r data/lang $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi
if [ $stage -le 11 ]; then
# Build a tree using our new topology.
# we build the tree using clean features (data/train) rather than
# the augmented features (data/train_rvb) to get better alignments
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
--leftmost-questions-truncate -1 \
--context-opts "--context-width=2 --central-position=1" \
--cmd "$train_cmd" 7000 data/train $lang exp/tri5a $treedir || exit 1
fi
if [ $stage -le 12 ]; then
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}')
learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
lstm_opts="decay-time=40"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
# the first splicing is moved before the lda layer, so no splicing here
relu-batchnorm-layer name=tdnn1 dim=$hidden_dim
relu-batchnorm-layer name=tdnn2 input=Append(-1,0,1) dim=$hidden_dim
relu-batchnorm-layer name=tdnn3 input=Append(-1,0,1) dim=$hidden_dim
fast-lstmp-layer name=lstm1 cell-dim=$cell_dim recurrent-projection-dim=$projection_dim non-recurrent-projection-dim=$projection_dim delay=-3 dropout-proportion=0.0 $lstm_opts
relu-batchnorm-layer name=tdnn4 input=Append(-3,0,3) dim=$hidden_dim
relu-batchnorm-layer name=tdnn5 input=Append(-3,0,3) dim=$hidden_dim
fast-lstmp-layer name=lstm2 cell-dim=$cell_dim recurrent-projection-dim=$projection_dim non-recurrent-projection-dim=$projection_dim delay=-3 dropout-proportion=0.0 $lstm_opts
relu-batchnorm-layer name=tdnn6 input=Append(-3,0,3) dim=$hidden_dim
relu-batchnorm-layer name=tdnn7 input=Append(-3,0,3) dim=$hidden_dim
fast-lstmp-layer name=lstm3 cell-dim=$cell_dim recurrent-projection-dim=$projection_dim non-recurrent-projection-dim=$projection_dim delay=-3 dropout-proportion=0.0 $lstm_opts
relu-batchnorm-layer name=tdnn8 input=Append(-3,0,3) dim=$hidden_dim
relu-batchnorm-layer name=tdnn9 input=Append(-3,0,3) dim=$hidden_dim
fast-lstmp-layer name=lstm4 cell-dim=$cell_dim recurrent-projection-dim=$projection_dim non-recurrent-projection-dim=$projection_dim delay=-3 dropout-proportion=0.0 $lstm_opts
## adding the layers for chain branch
output-layer name=output input=lstm4 output-delay=$label_delay include-log-softmax=false dim=$num_targets max-change=1.5
# adding the layers for xent branch
# This block prints the configs for a separate output that will be
# trained with a cross-entropy objective in the 'chain' models... this
# has the effect of regularizing the hidden parts of the model. we use
# 0.5 / args.xent_regularize as the learning rate factor- the factor of
# 0.5 / args.xent_regularize is suitable as it means the xent
# final-layer learns at a rate independent of the regularization
# constant; and the 0.5 was tuned so as to make the relative progress
# similar in the xent and regular final layers.
output-layer name=output-xent input=lstm4 output-delay=$label_delay dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 13 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/aspire-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
fi
mkdir -p $dir/egs
touch $dir/egs/.nodelete # keep egs around when that run dies.
steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir $train_ivector_dir \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.00005 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--trainer.dropout-schedule $dropout_schedule \
--trainer.num-chunk-per-minibatch 64,32 \
--trainer.frames-per-iter 1500000 \
--trainer.max-param-change 2.0 \
--trainer.num-epochs $num_epochs \
--trainer.optimization.shrink-value 0.99 \
--trainer.optimization.num-jobs-initial 3 \
--trainer.optimization.num-jobs-final 16 \
--trainer.optimization.initial-effective-lrate 0.001 \
--trainer.optimization.final-effective-lrate 0.0001 \
--trainer.optimization.momentum 0.0 \
--trainer.deriv-truncate-margin 8 \
--egs.stage $get_egs_stage \
--egs.opts "--frames-overlap-per-eg 0 --generate-egs-scp true" \
--egs.chunk-width 160,140,110,80 \
--egs.chunk-left-context $chunk_left_context \
--egs.chunk-right-context $chunk_right_context \
--egs.chunk-left-context-initial 0 \
--egs.chunk-right-context-final 0 \
--egs.dir "$common_egs_dir" \
--cleanup.remove-egs $remove_egs \
--feat-dir $train_data_dir \
--tree-dir $treedir \
--lat-dir $lat_dir \
--dir $dir || exit 1;
fi
graph_dir=$dir/graph_pp
if [ $stage -le 14 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 data/lang_pp_test $dir $graph_dir
fi
if [ $stage -le 15 ]; then
rm $dir/.error 2>/dev/null || true
for d in dev_rvb test_rvb; do
(
if [ ! -f exp/nnet3/ivectors_${d}/ivector_online.scp ]; then
steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 30 \
data/${d}_hires exp/nnet3/extractor \
exp/nnet3/ivectors_${d} || { echo "Failed i-vector extraction for data/${d}_hires"; touch $dir/.error; }
fi
decode_dir=$dir/decode_${d}_pp
steps/nnet3/decode.sh --nj 30 --cmd "$decode_cmd" --config conf/decode.config \
--acwt 1.0 --post-decode-acwt 10.0 \
--extra-left-context $extra_left_context \
--extra-right-context $extra_right_context \
--extra-left-context-initial 0 --extra-right-context-final 0 \
--frames-per-chunk 160 \
--online-ivector-dir exp/nnet3/ivectors_${d} \
$graph_dir data/${d}_hires $decode_dir || { echo "Failed decoding in $decode_dir"; touch $dir/.error; }
) &
done
wait
if [ -f $dir/.error ]; then
echo "Failed decoding."
exit 1
fi
fi
if [ $stage -le 16 ]; then
# %WER 22.9 | 2083 25834 | 81.6 12.0 6.4 4.5 22.9 70.7 | -0.546 | exp/chain/tdnn_lstm_1a/decode_dev_aspire_uniformsegmented_v9_pp_fg/score_8/penalty_0.0/ctm.filt.filt.sys
local/nnet3/decode.sh --stage $test_stage --decode-num-jobs 30 --affix "v9" \
--acwt 1.0 --post-decode-acwt 10.0 \
--window 10 --overlap 5 --frames-per-chunk 160 \
--extra-left-context $extra_left_context \
--extra-right-context $extra_right_context \
--extra-left-context-initial 0 --extra-right-context-final 0 \
--sub-speaker-frames 6000 --max-count 75 --ivector-scale 0.75 \
--pass2-decode-opts "--min-active 1000" \
dev_aspire data/lang $dir/graph_pp $dir
fi
if [ $stage -le 17 ]; then
# %WER 24.0 | 2083 25820 | 79.9 12.0 8.1 4.0 24.0 71.8 | -0.444 | exp/chain/tdnn_lstm_1a_online/decode_dev_aspire_uniformsegmented_v9_pp_fg/score_10/penalty_0.0/ctm.filt.filt.sys
local/nnet3/decode_online.sh --stage $test_stage --decode-num-jobs 30 --affix "v9" \
--acwt 1.0 --post-decode-acwt 10.0 \
--window 10 --overlap 5 --frames-per-chunk 160 \
--extra-left-context $extra_left_context \
--extra-right-context $extra_right_context \
--extra-left-context-initial 0 \
--max-count 75 \
--pass2-decode-opts "--min-active 1000" \
dev_aspire data/lang $dir/graph_pp $dir
fi
exit 0;