decode_online.sh
3.87 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/bin/bash
# Copyright Johns Hopkins University (Author: Daniel Povey, Vijayaditya Peddinti) 2016. Apache 2.0.
# This script does online decoding, unlike local/nnet3/decode.sh which does 2-pass decoding with
# uniform segments.
set -e
# general opts
iter=
stage=0
decode_num_jobs=30
num_jobs=30
affix=
# segmentation opts
window=10
overlap=5
# ivector+decode opts
# tuned based on the ASpIRE nnet2 online system
max_count=75
max_state_duration=40
silence_weight=0.00001
pass2_decode_opts="--min-active 1000"
lattice_beam=8
extra_left_context=0 # change for (B)LSTM
extra_right_context=0 # change for BLSTM
frames_per_chunk=50 # change for (B)LSTM
acwt=0.1 # important to change this when using chain models
post_decode_acwt=1.0 # important to change this when using chain models
extra_left_context_initial=0
score_opts="--min-lmwt 6 --max-lmwt 13"
. ./cmd.sh
[ -f ./path.sh ] && . ./path.sh
. utils/parse_options.sh || exit 1;
if [ $# -ne 4 ]; then
echo "Usage: $0 [options] <data-dir> <lang-dir> <graph-dir> <model-dir>"
echo " Options:"
echo " --stage (0|1|2) # start scoring script from part-way through."
echo "e.g.:"
echo "$0 dev_aspire data/lang exp/tri5a/graph_pp exp/nnet3/tdnn"
exit 1;
fi
data_set=$1 #select from {dev_aspire, test_aspire, eval_aspire}
lang=$2 # data/lang
graph=$3 #exp/tri5a/graph_pp
dir=$4 # exp/nnet3/tdnn
model_affix=`basename $dir`
affix=_${affix}${iter:+_iter${iter}}
segmented_data_set=${data_set}_uniformsegmented
if [ $stage -le 1 ]; then
local/generate_uniformly_segmented_data_dir.sh \
--overlap $overlap --window $window $data_set $segmented_data_set
fi
if [[ "$data_set" =~ "test_aspire" ]]; then
out_file=single_dev_test${affix}_$model_affix.ctm
act_data_set=test_aspire
elif [[ "$data_set" =~ "eval_aspire" ]]; then
out_file=single_eval${affix}_$model_affix.ctm
act_data_set=eval_aspire
elif [[ "$data_set" =~ "dev_aspire" ]]; then
# we will just decode the directory without oracle segments file
# as we would like to operate in the actual evaluation condition
out_file=single_dev${affix}_${model_affix}.ctm
act_data_set=dev_aspire
else
echo "$0: Unknown data-set $data_set"
exit 1
fi
if [ $stage -le 2 ]; then
# If this setup used PLP features, we'd have to give the option --feature-type plp
# to the script below.
steps/online/nnet3/prepare_online_decoding.sh \
--mfcc-config conf/mfcc_hires.conf \
--max-count $max_count \
$lang exp/nnet3/extractor "$dir" ${dir}_online
fi
decode_dir=${dir}_online/decode_${segmented_data_set}${affix}_pp
if [ $stage -le 3 ]; then
echo "Generating lattices, with --acwt $acwt and --post-decode-acwt $post_decode_acwt "
# the following options have not yet been implemented
# --frames-per-chunk "$frames_per_chunk"
#--extra-left-context $extra_left_context \
#--extra-right-context $extra_right_context \
steps/online/nnet3/decode.sh --nj $decode_num_jobs --cmd "$decode_cmd" \
--config conf/decode.config $pass2_decode_opts \
--acwt $acwt --post-decode-acwt $post_decode_acwt \
--extra-left-context-initial $extra_left_context_initial \
--silence-weight $silence_weight \
--per-utt true \
--skip-scoring true ${iter:+--iter $iter} --lattice-beam $lattice_beam \
$graph data/${segmented_data_set}_hires ${decode_dir}_tg || \
{ echo "$0: Error decoding" && exit 1; }
fi
if [ $stage -le 4 ]; then
echo "Rescoring lattices"
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
--skip-scoring true \
${lang}_pp_test{,_fg} data/${segmented_data_set}_hires \
${decode_dir}_{tg,fg};
fi
decode_dir=${decode_dir}_fg
if [ $stage -le 5 ]; then
local/score_aspire.sh --cmd "$decode_cmd" \
$score_opts \
--word-ins-penalties "0.0,0.25,0.5,0.75,1.0" \
--ctm-beam 6 \
${iter:+--iter $iter} \
--decode-mbr true \
--tune-hyper true \
$lang $decode_dir $act_data_set $segmented_data_set $out_file
fi