simu_noisy_chime4_data_prep.sh
5.26 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/bin/bash
set -e
# Copyright 2009-2012 Microsoft Corporation Johns Hopkins University (Author: Daniel Povey)
# Apache 2.0.
# This is modified from the script in standard Kaldi recipe to account
# for the way the WSJ data is structured on the Edinburgh systems.
# - Arnab Ghoshal, 29/05/12
# Modified from the script for CHiME2 baseline
# Shinji Watanabe 02/13/2015
# Modified to use data of six channels
# Szu-Jui Chen 09/29/2017
# Config:
eval_flag=true # make it true when the evaluation data are released
. utils/parse_options.sh || exit 1;
if [ $# -ne 1 ]; then
printf "\nUSAGE: %s <corpus-directory>\n\n" `basename $0`
echo "The argument should be a the top-level Chime4 directory."
echo "It is assumed that there will be a 'data' subdirectory"
echo "within the top-level corpus directory."
exit 1;
fi
echo "$0 $@" # Print the command line for logging
audio_dir=$1/data/audio/16kHz/isolated
trans_dir=$1/data/transcriptions
echo "extract all channels (CH[1-6].wav) for noisy data"
dir=`pwd`/data/local/data
lmdir=`pwd`/data/local/nist_lm
mkdir -p $dir $lmdir
local=`pwd`/local
utils=`pwd`/utils
. ./path.sh # Needed for KALDI_ROOT
export PATH=$PATH:$KALDI_ROOT/tools/irstlm/bin
sph2pipe=$KALDI_ROOT/tools/sph2pipe_v2.5/sph2pipe
if [ ! -x $sph2pipe ]; then
echo "Could not find (or execute) the sph2pipe program at $sph2pipe";
exit 1;
fi
if $eval_flag; then
list_set="tr05_simu_noisy dt05_simu_noisy et05_simu_noisy"
else
list_set="tr05_simu_noisy dt05_simu_noisy"
fi
cd $dir
find $audio_dir -name '*CH[1-6].wav' | grep 'tr05_bus_simu\|tr05_caf_simu\|tr05_ped_simu\|tr05_str_simu' | sort -u > tr05_simu_noisy.flist
find $audio_dir -name '*CH[1-6].wav' | grep 'dt05_bus_simu\|dt05_caf_simu\|dt05_ped_simu\|dt05_str_simu' | sort -u > dt05_simu_noisy.flist
if $eval_flag; then
find $audio_dir -name '*CH[1-6].wav' | grep 'et05_bus_simu\|et05_caf_simu\|et05_ped_simu\|et05_str_simu' | sort -u > et05_simu_noisy.flist
fi
# make a dot format from json annotation files
cp $trans_dir/dt05_simu.dot_all dt05_simu.dot
if $eval_flag; then
cp $trans_dir/et05_simu.dot_all et05_simu.dot
fi
# make a scp file from file list
for x in $list_set; do
cat $x.flist | awk -F'[/]' '{print $NF}'| sed -e 's/\.wav/_SIMU/' > ${x}_wav.id.temp
cat ${x}_wav.id.temp | awk -F'_' '{print $3}' | awk -F'.' '{print $2}' > $x.ch
cat ${x}_wav.id.temp | awk -F'_' '{print $1}' > $x.part1
cat ${x}_wav.id.temp | sed -e 's/^..._//' > $x.part2
paste -d"_" $x.part1 $x.ch $x.part2 > ${x}_wav.ids
paste -d" " ${x}_wav.ids $x.flist | sort -t_ -k1,1 -k3 > ${x}_wav.scp.temp
done
# make a transcription from dot
# simulation training data extract dot file from original WSJ0 data
# since it is generated from these data
if [ ! -e dot_files.flist ]; then
echo "Could not find $dir/dot_files.flist files, first run local/clean_wsj0_data_prep.sh";
exit 1;
fi
cat tr05_simu_noisy_wav.scp.temp | awk -F'[_]' '{print $3}' | tr '[A-Z]' '[a-z]' \
| $local/find_noisy_transcripts.pl dot_files.flist | cut -f 2- -d" " > tr05_simu_noisy.txt
cat tr05_simu_noisy_wav.scp.temp | cut -f 1 -d" " > tr05_simu_noisy.ids
paste -d" " tr05_simu_noisy.ids tr05_simu_noisy.txt | sort -t_ -k1,1 -k3 > tr05_simu_noisy.trans1
# dt05 and et05 simulation data are generated from the CHiME4 booth recording
# and we use CHiME4 dot files
cat dt05_simu.dot | sed -e 's/(\(.*\))/\1/' | awk '{print $NF ".CH1_SIMU"}'> dt05_simu_noisy.ids
cat dt05_simu.dot | sed -e 's/(.*)//' > dt05_simu_noisy.txt
paste -d" " dt05_simu_noisy.ids dt05_simu_noisy.txt | \
awk '{print}{sub(/CH1/, "CH2",$0);print}{sub(/CH2/, "CH3",$0);print}{sub(/CH3/, "CH4",$0);print}{sub(/CH4/, "CH5",$0);print}{sub(/CH5/, "CH6",$0);print}' | \
sort -k 1 > dt05_simu_noisy.trans1
if $eval_flag; then
cat et05_simu.dot | sed -e 's/(\(.*\))/\1/' | awk '{print $NF ".CH1_SIMU"}'> et05_simu_noisy.ids
cat et05_simu.dot | sed -e 's/(.*)//' > et05_simu_noisy.txt
paste -d" " et05_simu_noisy.ids et05_simu_noisy.txt | \
awk '{print}{sub(/CH1/, "CH2",$0);print}{sub(/CH2/, "CH3",$0);print}{sub(/CH3/, "CH4",$0);print}{sub(/CH4/, "CH5",$0);print}{sub(/CH5/, "CH6",$0);print}' | \
sort -k 1 > et05_simu_noisy.trans1
fi
# Do some basic normalization steps. At this point we don't remove OOVs--
# that will be done inside the training scripts, as we'd like to make the
# data-preparation stage independent of the specific lexicon used.
noiseword="<NOISE>";
for x in $list_set;do
cat ${x}_wav.scp.temp | awk '{print $1}' > $x.txt.part1
cat $x.trans1 | awk '{$1=""; print $0}' | sed 's/^[ \t]*//g' > $x.txt.part2
paste -d" " $x.txt.part1 $x.txt.part2 > $x.trans1
cat $x.trans1 | $local/normalize_transcript.pl $noiseword \
| sort > $x.txt || exit 1;
done
# Make the utt2spk and spk2utt files.
for x in $list_set; do
sort ${x}_wav.scp.temp > ${x}_wav.scp
cat ${x}_wav.scp | awk -F'_' '{print $1"_"$2}' > $x.spk
cat ${x}_wav.scp | awk '{print $1}' > $x.utt
paste -d" " $x.utt $x.spk > $x.utt2spk
cat $x.utt2spk | $utils/utt2spk_to_spk2utt.pl > $x.spk2utt || exit 1;
done
# copying data to data/...
for x in $list_set; do
mkdir -p ../../$x
cp ${x}_wav.scp ../../$x/wav.scp || exit 1;
cp ${x}.txt ../../$x/text || exit 1;
cp ${x}.spk2utt ../../$x/spk2utt || exit 1;
cp ${x}.utt2spk ../../$x/utt2spk || exit 1;
done
# clean up temp files
rm *.temp
rm *.part{1,2}
echo "Data preparation succeeded"