run_cnn_aug_1d.sh
4.62 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/bin/bash
# 1d is as 1c but setting num-minibatches-history=40.
# A bit better.
# local/nnet3/compare.sh exp/cnn_aug_1c_cifar10 exp/cnn_aug_1d_cifar10
# System cnn_aug_1c_cifar10 cnn_aug_1d_cifar10
# final test accuracy: 0.8834 0.8857
# final train accuracy: 0.9644 0.9626
# final test objf: -0.362241 -0.356861
# final train objf: -0.114712 -0.114144
# num-parameters: 2205290 2205290
# local/nnet3/compare.sh exp/cnn_aug_1c_cifar100 exp/cnn_aug_1d_cifar100
# System cnn_aug_1c_cifar100 cnn_aug_1d_cifar100
# final test accuracy: 0.6219 0.6237
# final train accuracy: 0.8634 0.8688
# final test objf: -1.42399 -1.40784
# final train objf: -0.493349 -0.482047
# num-parameters: 2251460 2251460
# steps/info/nnet3_dir_info.pl exp/cnn_aug_1d_cifar10{,0}
# exp/cnn_aug_1d_cifar10: num-iters=200 nj=1..2 num-params=2.2M dim=96->10 combine=-0.24->-0.23 loglike:train/valid[132,199,final]=(-0.172,-0.114,-0.114/-0.38,-0.36,-0.36) accuracy:train/valid[132,199,final]=(0.938,0.963,0.963/0.879,0.887,0.886)
# exp/cnn_aug_1d_cifar100: num-iters=200 nj=1..2 num-params=2.3M dim=96->100 combine=-0.90->-0.92 loglike:train/valid[132,199,final]=(-0.63,-0.48,-0.48/-1.43,-1.41,-1.41) accuracy:train/valid[132,199,final]=(0.821,0.868,0.869/0.61,0.62,0.62)
# Set -e here so that we catch if any executable fails immediately
set -euo pipefail
# training options
stage=0
train_stage=-10
dataset=cifar10
srand=0
reporting_email=
affix=_aug_1d
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
dir=exp/cnn${affix}_${dataset}
egs=exp/${dataset}_egs
if [ ! -d $egs ]; then
echo "$0: expected directory $egs to exist. Run the get_egs.sh commands in the"
echo " run.sh before this script."
exit 1
fi
# check that the expected files are in the egs directory.
for f in $egs/egs.1.ark $egs/train_diagnostic.egs $egs/valid_diagnostic.egs $egs/combine.egs \
$egs/info/feat_dim $egs/info/left_context $egs/info/right_context \
$egs/info/output_dim; do
if [ ! -e $f ]; then
echo "$0: expected file $f to exist."
exit 1;
fi
done
mkdir -p $dir/log
if [ $stage -le 1 ]; then
mkdir -p $dir
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(cat $egs/info/output_dim)
# Note: we hardcode in the CNN config that we are dealing with 32x3x color
# images.
a="num-minibatches-history=40.0"
common1="$a required-time-offsets=0 height-offsets=-1,0,1 num-filters-out=32"
common2="$a required-time-offsets=0 height-offsets=-1,0,1 num-filters-out=64"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=96 name=input
conv-relu-batchnorm-layer name=cnn1 height-in=32 height-out=32 time-offsets=-1,0,1 $common1
conv-relu-batchnorm-dropout-layer name=cnn2 height-in=32 height-out=16 time-offsets=-1,0,1 dropout-proportion=0.25 $common1 height-subsample-out=2
conv-relu-batchnorm-layer name=cnn3 height-in=16 height-out=16 time-offsets=-2,0,2 $common2
conv-relu-batchnorm-dropout-layer name=cnn4 height-in=16 height-out=8 time-offsets=-2,0,2 dropout-proportion=0.25 $common2 height-subsample-out=2
conv-relu-batchnorm-layer name=cnn5 height-in=8 height-out=8 time-offsets=-4,0,4 $common2
relu-dropout-layer name=fully_connected1 input=Append(2,6,10,14,18,22,26,30) dropout-proportion=0.5 dim=512
output-layer name=output dim=$num_targets
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 2 ]; then
steps/nnet3/train_raw_dnn.py --stage=$train_stage \
--cmd="$train_cmd" \
--image.augmentation-opts="--horizontal-flip-prob=0.5 --horizontal-shift=0.1 --vertical-shift=0.1 --num-channels=3" \
--trainer.srand=$srand \
--trainer.max-param-change=2.0 \
--trainer.num-epochs=100 \
--egs.frames-per-eg=1 \
--trainer.optimization.num-jobs-initial=1 \
--trainer.optimization.num-jobs-final=2 \
--trainer.optimization.initial-effective-lrate=0.003 \
--trainer.optimization.final-effective-lrate=0.0001 \
--trainer.optimization.minibatch-size=256,128,64 \
--trainer.shuffle-buffer-size=2000 \
--egs.dir="$egs" \
--use-gpu=true \
--reporting.email="$reporting_email" \
--dir=$dir || exit 1;
fi
exit 0;