run_tdnn_1a.sh
8.97 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/bin/bash
# This is a basic TDNN experiment.(As the speed_perturbation is done by default,
# the _sp suffix on the directory name is removed.)
# The experiments use default <number_mode> in run.sh "local/csj_data_prep.sh data/csj-data"
# steps/info/chain_dir_info.pl exp/chain/tdnn1a
# exp/chain/tdnn1a: num-iters=321 nj=3..10 num-params=13.6M dim=40+100->3907 combine=-0.064->-0.063 xent:train/valid[213,320,final]=(-0.892,-0.831,-0.829/-0.981,-0.954,-0.954) logprob:train/valid[213,320,final]=(-0.064,-0.053,-0.053/-0.078,-0.078,-0.078)
# local/chain/compare_wer.sh --online exp/chain/tdnn1a
# System tdnn1a
# WER eval1 10.30
# [online:] 10.30
# WER eval2 8.59
# [online:] 8.56
# WER eval3 9.90
# [online:] 9.90
# Final train prob -0.0532
# Final valid prob -0.0776
# Final train prob (xent) -0.8289
# Final valid prob (xent) -0.9539
set -euo pipefail
# First the options that are passed through to run_ivector_common.sh
# (some of which are also used in this script directly).
stage=0
decode_nj=10
train_set=train_nodup
dev_set=
test_sets="eval1 eval2 eval3"
gmm=tri4
nnet3_affix=
# The rest are configs specific to this script. Most of the parameters
# are just hardcoded at this level, in the commands below.
affix=1a # affix for the TDNN directory name
tree_affix=
train_stage=-10
get_egs_stage=-10
decode_iter=
# training options
# training chunk-options
decode_iter=
num_epochs=4
initial_effective_lrate=0.001
final_effective_lrate=0.0001
leftmost_questions_truncate=-1
max_param_change=2.0
final_layer_normalize_target=0.5
num_jobs_initial=3
num_jobs_final=10
minibatch_size=128,64
frames_per_eg=150,140,100
remove_egs=true
common_egs_dir=
xent_regularize=0.1
test_online_decoding=false # if true, it will run the last decoding stage.
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet3 setup, and you can skip them.
local/nnet3/run_ivector_common.sh --stage $stage \
--train-set $train_set \
--gmm $gmm \
--nnet3-affix "$nnet3_affix" || exit 1;
gmm_dir=exp/$gmm
ali_dir=exp/${gmm}_ali_${train_set}_sp
tree_dir=exp/chain${nnet3_affix}/tree${tree_affix:+_$tree_affix}
lang=data/lang_chain
lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats
dir=exp/chain${nnet3_affix}/tdnn${affix}
train_data_dir=data/${train_set}_sp_hires
lores_train_data_dir=data/${train_set}_sp
train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires
for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
$lores_train_data_dir/feats.scp $ali_dir/ali.1.gz; do
[ ! -f $f ] && echo "$0; expected file $f to exist" && exit 1;
done
if [ $stage -le 9 ]; then
# Get the alignments as lattices (gives the LF-MMI training more freedom).
# use the same num-jobs as the alignments
steps/align_fmllr_lats.sh --nj 75 --cmd "$train_cmd" ${lores_train_data_dir} \
data/lang $gmm_dir $lat_dir
rm $lat_dir/fsts.*.gz # save space
fi
if [ $stage -le 10 ]; then
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
rm -rf $lang
cp -r data/lang $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi
if [ $stage -le 11 ]; then
# Build a tree using our new topology. This is the critically different
# step compared with other recipes.
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
--leftmost-questions-truncate $leftmost_questions_truncate \
--context-opts "--context-width=2 --central-position=1" \
--cmd "$train_cmd" 7000 ${lores_train_data_dir} $lang $ali_dir $tree_dir
fi
if [ $stage -le 12 ]; then
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}')
learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
# the first splicing is moved before the lda layer, so no splicing here
relu-batchnorm-layer name=tdnn1 dim=625
relu-batchnorm-layer name=tdnn2 input=Append(-1,0,1) dim=625
relu-batchnorm-layer name=tdnn3 dim=625
relu-batchnorm-layer name=tdnn4 input=Append(-1,0,1) dim=625
relu-batchnorm-layer name=tdnn5 dim=625
relu-batchnorm-layer name=tdnn6 input=Append(-3,0,3) dim=625
relu-batchnorm-layer name=tdnn7 input=Append(-3,0,3) dim=625
relu-batchnorm-layer name=tdnn8 input=Append(-3,0,3) dim=625
relu-batchnorm-layer name=tdnn9 input=Append(-3,0,3) dim=625
## adding the layers for chain branch
relu-batchnorm-layer name=prefinal-chain input=tdnn9 dim=625 target-rms=0.5
output-layer name=output include-log-softmax=false dim=$num_targets max-change=1.5
# adding the layers for xent branch
# This block prints the configs for a separate output that will be
# trained with a cross-entropy objective in the 'chain' models... this
# has the effect of regularizing the hidden parts of the model. we use
# 0.5 / args.xent_regularize as the learning rate factor- the factor of
# 0.5 / args.xent_regularize is suitable as it means the xent
# final-layer learns at a rate independent of the regularization
# constant; and the 0.5 was tuned so as to make the relative progress
# similar in the xent and regular final layers.
relu-batchnorm-layer name=prefinal-xent input=tdnn9 dim=625 target-rms=0.5
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 13 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/csj-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
fi
steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir $train_ivector_dir \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.00005 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--egs.dir "$common_egs_dir" \
--egs.stage $get_egs_stage \
--egs.opts "--frames-overlap-per-eg 0" \
--egs.chunk-width $frames_per_eg \
--trainer.num-chunk-per-minibatch $minibatch_size \
--trainer.frames-per-iter 1500000 \
--trainer.num-epochs $num_epochs \
--trainer.optimization.num-jobs-initial $num_jobs_initial \
--trainer.optimization.num-jobs-final $num_jobs_final \
--trainer.optimization.initial-effective-lrate $initial_effective_lrate \
--trainer.optimization.final-effective-lrate $final_effective_lrate \
--trainer.max-param-change $max_param_change \
--cleanup.remove-egs $remove_egs \
--feat-dir $train_data_dir \
--tree-dir $tree_dir \
--lat-dir $lat_dir \
--dir $dir || exit 1;
fi
if [ $stage -le 14 ]; then
utils/mkgraph.sh \
--self-loop-scale 1.0 data/lang_csj_tg $dir $dir/graph_csj_tg
for decode_set in $test_sets; do
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 --nj 10 \
--cmd "$decode_cmd" \
--online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${decode_set}_hires \
$dir/graph_csj_tg data/${decode_set}_hires $dir/decode_${decode_set}
done
steps/online/nnet3/prepare_online_decoding.sh \
--mfcc-config conf/mfcc_hires.conf $lang exp/nnet3${nnet3_affix}/extractor \
$dir ${dir}_online
for decode_set in $test_sets; do
steps/online/nnet3/decode.sh --nj 10 --cmd "$decode_cmd" \
--acwt 1.0 --post-decode-acwt 10.0 \
$dir/graph_csj_tg data/${decode_set}_hires ${dir}_online/decode_${decode_set}
done
fi
exit 0;