run_tdnn.sh 3.8 KB
#!/bin/bash

# This is modified from swbd/s5c/local/nnet3/run_tdnn.sh
# Tomohiro Tanaka 15/05/2016

# this is the standard "tdnn" system, built in nnet3; it's what we use to
# call multi-splice.

. ./cmd.sh

# At this script level we don't support not running on GPU, as it would be painfully slow.
# If you want to run without GPU you'd have to call train_tdnn.sh with --gpu false,
# --num-threads 16 and --minibatch-size 128.

train_stage=-10
stage=0
common_egs_dir=
reporting_email=
remove_egs=true

affix=1a # affix for the TDNN directory name
nnet3_affix=
train_set=train_nodup
gmm=tri4

. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh

if ! cuda-compiled; then
  cat <<EOF && exit 1 
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA 
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi

local/nnet3/run_ivector_common.sh --stage $stage \
                                  --train-set $train_set \
                                  --gmm $gmm \
                                  --nnet3-affix "$nnet3_affix" || exit 1;

gmm_dir=exp/$gmm
ali_dir=exp/${gmm}_ali_${train_set}_sp
dir=exp/nnet3${nnet3_affix}/tdnn${affix}
train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires
if [ -e data/train_dev ] ;then
    dev_set=train_dev
fi


if [ $stage -le 9 ]; then
  echo "$0: creating neural net configs";

  num_targets=$(tree-info $ali_dir/tree | grep num-pdfs | awk '{print $2}')

  mkdir -p $dir/configs
  cat <<EOF > $dir/configs/network.xconfig
  input dim=100 name=ivector
  input dim=40 name=input

  # please note that it is important to have input layer with the name=input
  # as the layer immediately preceding the fixed-affine-layer to enable
  # the use of short notation for the descriptor
  fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat

  # the first splicing is moved before the lda layer, so no splicing here
  relu-renorm-layer name=tdnn1 dim=1024
  relu-renorm-layer name=tdnn2 input=Append(-1,2) dim=1024
  relu-renorm-layer name=tdnn3 input=Append(-3,3) dim=1024
  relu-renorm-layer name=tdnn4 input=Append(-3,3) dim=1024
  relu-renorm-layer name=tdnn5 input=Append(-7,2) dim=1024
  relu-renorm-layer name=tdnn6 dim=1024

  output-layer name=output input=tdnn6 dim=$num_targets max-change=1.5
EOF

  steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi

if [ $stage -le 10 ]; then
  if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
    utils/create_split_dir.pl \
     /export/b0{3,4,5,6}/$USER/kaldi-data/egs/csj-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
  fi

  steps/nnet3/train_dnn.py --stage=$train_stage \
    --cmd="$decode_cmd" \
    --feat.online-ivector-dir $train_ivector_dir \
    --feat.cmvn-opts="--norm-means=false --norm-vars=false" \
    --trainer.num-epochs 2 \
    --trainer.optimization.num-jobs-initial 1 \
    --trainer.optimization.num-jobs-final 4 \
    --trainer.optimization.initial-effective-lrate 0.0017 \
    --trainer.optimization.final-effective-lrate 0.00017 \
    --egs.dir "$common_egs_dir" \
    --cleanup.remove-egs $remove_egs \
    --cleanup.preserve-model-interval 100 \
    --use-gpu true \
    --feat-dir=data/${train_set}_sp_hires \
    --ali-dir $ali_dir \
    --lang data/lang \
    --reporting.email="$reporting_email" \
    --dir=$dir  || exit 1;

fi

graph_dir=exp/tri4/graph_csj_tg 
if [ $stage -le 11 ]; then
    for eval_num in $dev_set eval1 eval2 eval3 ; do
	steps/nnet3/decode.sh --nj 10 --cmd "$decode_cmd" \
            --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${eval_num}_hires \
            $graph_dir data/${eval_num}_hires $dir/decode_${eval_num}_csj || exit 1;
    done
fi
wait;
exit 0;