run.sh
10.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/bin/bash
# Copyright 2017 Johns Hopkins University (Author: Daniel Garcia-Romero)
# 2017 Johns Hopkins University (Author: Daniel Povey)
# 2017-2018 David Snyder
# 2018 Ewald Enzinger
# 2018 Zili Huang
# Apache 2.0.
#
# See ../README.txt for more info on data required.
# Results (diarization error rate) are inline in comments below.
. ./cmd.sh
. ./path.sh
set -e
mfccdir=`pwd`/mfcc
vaddir=`pwd`/mfcc
voxceleb1_root=/export/corpora/VoxCeleb1
voxceleb2_root=/export/corpora/VoxCeleb2
dihard_2018_dev=/export/corpora/LDC/LDC2018E31
dihard_2018_eval=/export/corpora/LDC/LDC2018E32v1.1
num_components=2048
ivector_dim=400
ivec_dir=exp/extractor_c${num_components}_i${ivector_dim}
stage=0
if [ $stage -le 0 ]; then
local/make_voxceleb2.pl $voxceleb2_root dev data/voxceleb2_train
local/make_voxceleb2.pl $voxceleb2_root test data/voxceleb2_test
# Now prepare the VoxCeleb1 train and test data. If you downloaded the corpus soon
# after it was first released, you may need to use an older version of the script, which
# can be invoked as follows:
# local/make_voxceleb1.pl $voxceleb1_root data
local/make_voxceleb1_v2.pl $voxceleb1_root dev data/voxceleb1_train
local/make_voxceleb1_v2.pl $voxceleb1_root test data/voxceleb1_test
# We'll train on all of VoxCeleb2, plus the training portion of VoxCeleb1.
# This should give 7,351 speakers and 1,277,503 utterances.
utils/combine_data.sh data/train data/voxceleb2_train data/voxceleb2_test data/voxceleb1_train
# Prepare the development and evaluation set for DIHARD 2018.
local/make_dihard_2018_dev.sh $dihard_2018_dev data/dihard_2018_dev
local/make_dihard_2018_eval.sh $dihard_2018_eval data/dihard_2018_eval
fi
if [ $stage -le 1 ]; then
# Make MFCCs for each dataset
for name in train dihard_2018_dev dihard_2018_eval; do
steps/make_mfcc.sh --write-utt2num-frames true \
--mfcc-config conf/mfcc.conf --nj 40 --cmd "$train_cmd --max-jobs-run 20" \
data/${name} exp/make_mfcc $mfccdir
utils/fix_data_dir.sh data/${name}
done
# Compute the energy-based VAD for train
sid/compute_vad_decision.sh --nj 40 --cmd "$train_cmd" \
data/train exp/make_vad $vaddir
utils/fix_data_dir.sh data/train
# This writes features to disk after adding deltas and applying the sliding window CMN.
# Although this is somewhat wasteful in terms of disk space, for diarization
# it ends up being preferable to performing the CMN in memory. If the CMN
# were performed in memory it would need to be performed after the subsegmentation,
# which leads to poorer results.
for name in train dihard_2018_dev dihard_2018_eval; do
local/prepare_feats.sh --nj 40 --cmd "$train_cmd" \
data/$name data/${name}_cmn exp/${name}_cmn
if [ -f data/$name/vad.scp ]; then
cp data/$name/vad.scp data/${name}_cmn/
fi
if [ -f data/$name/segments ]; then
cp data/$name/segments data/${name}_cmn/
fi
utils/fix_data_dir.sh data/${name}_cmn
done
echo "0.01" > data/train_cmn/frame_shift
# Create segments to extract i-vectors from for PLDA training data.
# The segments are created using an energy-based speech activity
# detection (SAD) system, but this is not necessary. You can replace
# this with segments computed from your favorite SAD.
diarization/vad_to_segments.sh --nj 40 --cmd "$train_cmd" \
data/train_cmn data/train_cmn_segmented
fi
if [ $stage -le 2 ]; then
# Train the UBM on VoxCeleb 1 and 2.
sid/train_diag_ubm.sh --cmd "$train_cmd --mem 4G" \
--nj 40 --num-threads 8 \
data/train $num_components \
exp/diag_ubm
sid/train_full_ubm.sh --cmd "$train_cmd --mem 25G" \
--nj 40 --remove-low-count-gaussians false \
data/train \
exp/diag_ubm exp/full_ubm
fi
if [ $stage -le 3 ]; then
# In this stage, we train the i-vector extractor on a subset of VoxCeleb 1
# and 2.
#
# Note that there are well over 1 million utterances in our training set,
# and it takes an extremely long time to train the extractor on all of this.
# Also, most of those utterances are very short. Short utterances are
# harmful for training the i-vector extractor. Therefore, to reduce the
# training time and improve performance, we will only train on the 100k
# longest utterances.
utils/subset_data_dir.sh \
--utt-list <(sort -n -k 2 data/train/utt2num_frames | tail -n 100000) \
data/train data/train_100k
# Train the i-vector extractor.
sid/train_ivector_extractor.sh --cmd "$train_cmd --mem 16G" \
--ivector-dim $ivector_dim --num-iters 5 \
exp/full_ubm/final.ubm data/train_100k \
$ivec_dir
fi
if [ $stage -le 4 ]; then
# Extract i-vectors for DIHARD 2018 development and evaluation set.
# We set apply-cmn false and apply-deltas false because we already add
# deltas and apply cmn in stage 1.
diarization/extract_ivectors.sh --cmd "$train_cmd --mem 20G" \
--nj 40 --window 1.5 --period 0.75 --apply-cmn false --apply-deltas false \
--min-segment 0.5 $ivec_dir \
data/dihard_2018_dev_cmn $ivec_dir/ivectors_dihard_2018_dev
diarization/extract_ivectors.sh --cmd "$train_cmd --mem 20G" \
--nj 40 --window 1.5 --period 0.75 --apply-cmn false --apply-deltas false \
--min-segment 0.5 $ivec_dir \
data/dihard_2018_eval_cmn $ivec_dir/ivectors_dihard_2018_eval
# Reduce the amount of training data for the PLDA training.
utils/subset_data_dir.sh data/train_cmn_segmented 128000 data/train_cmn_segmented_128k
# Extract i-vectors for the VoxCeleb, which is our PLDA training
# data. A long period is used here so that we don't compute too
# many i-vectors for each recording.
diarization/extract_ivectors.sh --cmd "$train_cmd --mem 25G" \
--nj 40 --window 3.0 --period 10.0 --min-segment 1.5 --apply-cmn false --apply-deltas false \
--hard-min true $ivec_dir \
data/train_cmn_segmented_128k $ivec_dir/ivectors_train_segmented_128k
fi
if [ $stage -le 5 ]; then
# Train a PLDA model on VoxCeleb, using DIHARD 2018 development set to whiten.
"$train_cmd" $ivec_dir/ivectors_dihard_2018_dev/log/plda.log \
ivector-compute-plda ark:$ivec_dir/ivectors_train_segmented_128k/spk2utt \
"ark:ivector-subtract-global-mean \
scp:$ivec_dir/ivectors_train_segmented_128k/ivector.scp ark:- \
| transform-vec $ivec_dir/ivectors_dihard_2018_dev/transform.mat ark:- ark:- \
| ivector-normalize-length ark:- ark:- |" \
$ivec_dir/ivectors_dihard_2018_dev/plda || exit 1;
fi
# Perform PLDA scoring
if [ $stage -le 6 ]; then
# Perform PLDA scoring on all pairs of segments for each recording.
diarization/score_plda.sh --cmd "$train_cmd --mem 4G" \
--nj 20 $ivec_dir/ivectors_dihard_2018_dev $ivec_dir/ivectors_dihard_2018_dev \
$ivec_dir/ivectors_dihard_2018_dev/plda_scores
diarization/score_plda.sh --cmd "$train_cmd --mem 4G" \
--nj 20 $ivec_dir/ivectors_dihard_2018_dev $ivec_dir/ivectors_dihard_2018_eval \
$ivec_dir/ivectors_dihard_2018_eval/plda_scores
fi
# Cluster the PLDA scores using a stopping threshold.
if [ $stage -le 7 ]; then
# First, we find the threshold that minimizes the DER on DIHARD 2018 development set.
mkdir -p $ivec_dir/tuning
echo "Tuning clustering threshold for DIHARD 2018 development set"
best_der=100
best_threshold=0
# The threshold is in terms of the log likelihood ratio provided by the
# PLDA scores. In a perfectly calibrated system, the threshold is 0.
# In the following loop, we evaluate DER performance on DIHARD 2018 development
# set using some reasonable thresholds for a well-calibrated system.
for threshold in -0.5 -0.4 -0.3 -0.2 -0.1 -0.05 0 0.05 0.1 0.2 0.3 0.4 0.5; do
diarization/cluster.sh --cmd "$train_cmd --mem 4G" --nj 20 \
--threshold $threshold --rttm-channel 1 $ivec_dir/ivectors_dihard_2018_dev/plda_scores \
$ivec_dir/ivectors_dihard_2018_dev/plda_scores_t$threshold
md-eval.pl -r data/dihard_2018_dev/rttm \
-s $ivec_dir/ivectors_dihard_2018_dev/plda_scores_t$threshold/rttm \
2> $ivec_dir/tuning/dihard_2018_dev_t${threshold}.log \
> $ivec_dir/tuning/dihard_2018_dev_t${threshold}
der=$(grep -oP 'DIARIZATION\ ERROR\ =\ \K[0-9]+([.][0-9]+)?' \
$ivec_dir/tuning/dihard_2018_dev_t${threshold})
if [ $(perl -e "print ($der < $best_der ? 1 : 0);") -eq 1 ]; then
best_der=$der
best_threshold=$threshold
fi
done
echo "$best_threshold" > $ivec_dir/tuning/dihard_2018_dev_best
diarization/cluster.sh --cmd "$train_cmd --mem 4G" --nj 20 \
--threshold $(cat $ivec_dir/tuning/dihard_2018_dev_best) --rttm-channel 1 \
$ivec_dir/ivectors_dihard_2018_dev/plda_scores $ivec_dir/ivectors_dihard_2018_dev/plda_scores
# Cluster DIHARD 2018 evaluation set using the best threshold found for the DIHARD
# 2018 development set. The DIHARD 2018 development set is used as the validation
# set to tune the parameters.
diarization/cluster.sh --cmd "$train_cmd --mem 4G" --nj 20 \
--threshold $(cat $ivec_dir/tuning/dihard_2018_dev_best) --rttm-channel 1 \
$ivec_dir/ivectors_dihard_2018_eval/plda_scores $ivec_dir/ivectors_dihard_2018_eval/plda_scores
mkdir -p $ivec_dir/results
# Compute the DER on the DIHARD 2018 evaluation set. We use the official metrics of
# the DIHARD challenge. The DER is calculated with no unscored collars and including
# overlapping speech.
md-eval.pl -r data/dihard_2018_eval/rttm \
-s $ivec_dir/ivectors_dihard_2018_eval/plda_scores/rttm 2> $ivec_dir/results/threshold.log \
> $ivec_dir/results/DER_threshold.txt
der=$(grep -oP 'DIARIZATION\ ERROR\ =\ \K[0-9]+([.][0-9]+)?' \
$ivec_dir/results/DER_threshold.txt)
# Using supervised calibration, DER: 28.51%
echo "Using supervised calibration, DER: $der%"
fi
# Cluster the PLDA scores using the oracle number of speakers
if [ $stage -le 8 ]; then
# In this section, we show how to do the clustering if the number of speakers
# (and therefore, the number of clusters) per recording is known in advance.
diarization/cluster.sh --cmd "$train_cmd --mem 4G" --nj 20 \
--reco2num-spk data/dihard_2018_eval/reco2num_spk --rttm-channel 1 \
$ivec_dir/ivectors_dihard_2018_eval/plda_scores $ivec_dir/ivectors_dihard_2018_eval/plda_scores_num_spk
md-eval.pl -r data/dihard_2018_eval/rttm \
-s $ivec_dir/ivectors_dihard_2018_eval/plda_scores_num_spk/rttm 2> $ivec_dir/results/num_spk.log \
> $ivec_dir/results/DER_num_spk.txt
der=$(grep -oP 'DIARIZATION\ ERROR\ =\ \K[0-9]+([.][0-9]+)?' \
$ivec_dir/results/DER_num_spk.txt)
# Using the oracle number of speakers, DER: 24.42%
echo "Using the oracle number of speakers, DER: $der%"
fi