run.sh 7.69 KB
#!/bin/bash

#
# Copyright 2014 University of Tehran (Author: Bagher BabaAli)
#           2014 Brno University of Technology (Karel Vesely)
#           2014 Johns Hopkins University (Daniel Povey)
#
# farsdat, description of the database:
# http://www.assta.org/sst/SST-94-Vol-ll/cache/SST-94-VOL2-Chapter15-p20.pdf

. ./cmd.sh
[ -f path.sh ] && . ./path.sh
set -e

# Acoustic model parameters
numLeavesTri1=2500
numGaussTri1=15000
numLeavesMLLT=2500
numGaussMLLT=15000
numLeavesSAT=2500
numGaussSAT=15000
numGaussUBM=400
numLeavesSGMM=7000
numGaussSGMM=9000

feats_nj=30
train_nj=30
decode_nj=30

echo ============================================================================
echo "                Data & Lexicon & Language Preparation                     "
echo ============================================================================

farsdat=/export/a09/bagher/developments/egs/farsdat/temp/database/ # @JHU

local/farsdat_data_prep.sh $farsdat || exit 1

local/farsdat_prepare_dict.sh

# Caution below: we insert optional-silence with probability 0.5, which is the
# default, but this is probably not appropriate for this setup, since silence
# appears also as a word in the dictionary and is scored.  We could stop this
# by using the option --sil-prob 0.0, but apparently this makes results worse.
# (-> In sclite scoring the deletions of 'sil' are not scored as errors)
utils/prepare_lang.sh --position-dependent-phones false --num-sil-states 3 \
 data/local/dict "sil" data/local/lang_tmp data/lang

local/farsdat_prepare_lm.sh

echo ============================================================================
echo "         MFCC Feature Extration & CMVN for Training and Test set           "
echo ============================================================================

# Now make MFCC features.
mfccdir=mfcc

for x in train dev test; do
  steps/make_mfcc.sh --cmd "$train_cmd" --nj $feats_nj data/$x exp/make_mfcc/$x $mfccdir
  steps/compute_cmvn_stats.sh data/$x exp/make_mfcc/$x $mfccdir
done

echo ============================================================================
echo "                     MonoPhone Training & Decoding                        "
echo ============================================================================

steps/train_mono.sh  --nj "$train_nj" --cmd "$train_cmd" data/train data/lang exp/mono

utils/mkgraph.sh data/lang_test_bg exp/mono exp/mono/graph

steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd" \
 exp/mono/graph data/dev exp/mono/decode_dev

steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd" \
 exp/mono/graph data/test exp/mono/decode_test

echo ============================================================================
echo "           tri1 : Deltas + Delta-Deltas Training & Decoding               "
echo ============================================================================

steps/align_si.sh --boost-silence 1.25 --nj "$train_nj" --cmd "$train_cmd" \
 data/train data/lang exp/mono exp/mono_ali

# Train tri1, which is deltas + delta-deltas, on train data.
steps/train_deltas.sh --cmd "$train_cmd" \
 $numLeavesTri1 $numGaussTri1 data/train data/lang exp/mono_ali exp/tri1

utils/mkgraph.sh data/lang_test_bg exp/tri1 exp/tri1/graph

steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd" \
 exp/tri1/graph data/dev exp/tri1/decode_dev

steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd" \
 exp/tri1/graph data/test exp/tri1/decode_test

echo ============================================================================
echo "                 tri2 : LDA + MLLT Training & Decoding                    "
echo ============================================================================

steps/align_si.sh --nj "$train_nj" --cmd "$train_cmd" \
  data/train data/lang exp/tri1 exp/tri1_ali

steps/train_lda_mllt.sh --cmd "$train_cmd" \
 --splice-opts "--left-context=3 --right-context=3" \
 $numLeavesMLLT $numGaussMLLT data/train data/lang exp/tri1_ali exp/tri2

utils/mkgraph.sh data/lang_test_bg exp/tri2 exp/tri2/graph

steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd" \
 exp/tri2/graph data/dev exp/tri2/decode_dev

steps/decode.sh --nj "$decode_nj" --cmd "$decode_cmd" \
 exp/tri2/graph data/test exp/tri2/decode_test

echo ============================================================================
echo "              tri3 : LDA + MLLT + SAT Training & Decoding                 "
echo ============================================================================

# Align tri2 system with train data.
steps/align_si.sh --nj "$train_nj" --cmd "$train_cmd" \
 --use-graphs true data/train data/lang exp/tri2 exp/tri2_ali

# From tri2 system, train tri3 which is LDA + MLLT + SAT.
steps/train_sat.sh --cmd "$train_cmd" \
 $numLeavesSAT $numGaussSAT data/train data/lang exp/tri2_ali exp/tri3

utils/mkgraph.sh data/lang_test_bg exp/tri3 exp/tri3/graph

steps/decode_fmllr.sh --nj "$decode_nj" --cmd "$decode_cmd" \
 exp/tri3/graph data/dev exp/tri3/decode_dev

steps/decode_fmllr.sh --nj "$decode_nj" --cmd "$decode_cmd" \
 exp/tri3/graph data/test exp/tri3/decode_test

echo ============================================================================
echo "                        SGMM2 Training & Decoding                         "
echo ============================================================================

steps/align_fmllr.sh --nj "$train_nj" --cmd "$train_cmd" \
 data/train data/lang exp/tri3 exp/tri3_ali

#exit 0 # From this point you can run DNN : local/nnet/run_dnn.sh

steps/train_ubm.sh --cmd "$train_cmd" \
 $numGaussUBM data/train data/lang exp/tri3_ali exp/ubm4

steps/train_sgmm2.sh --cmd "$train_cmd" $numLeavesSGMM $numGaussSGMM \
 data/train data/lang exp/tri3_ali exp/ubm4/final.ubm exp/sgmm2_4

utils/mkgraph.sh data/lang_test_bg exp/sgmm2_4 exp/sgmm2_4/graph

steps/decode_sgmm2.sh --nj "$decode_nj" --cmd "$decode_cmd"\
 --transform-dir exp/tri3/decode_dev exp/sgmm2_4/graph data/dev \
 exp/sgmm2_4/decode_dev

steps/decode_sgmm2.sh --nj "$decode_nj" --cmd "$decode_cmd"\
 --transform-dir exp/tri3/decode_test exp/sgmm2_4/graph data/test \
 exp/sgmm2_4/decode_test

echo ============================================================================
echo "                    MMI + SGMM2 Training & Decoding                       "
echo ============================================================================

steps/align_sgmm2.sh --nj "$train_nj" --cmd "$train_cmd" \
 --transform-dir exp/tri3_ali --use-graphs true --use-gselect true \
 data/train data/lang exp/sgmm2_4 exp/sgmm2_4_ali

steps/make_denlats_sgmm2.sh --nj "$train_nj" --sub-split "$train_nj" \
 --acwt 0.2 --lattice-beam 10.0 --beam 18.0 \
 --cmd "$decode_cmd" --transform-dir exp/tri3_ali \
 data/train data/lang exp/sgmm2_4_ali exp/sgmm2_4_denlats

steps/train_mmi_sgmm2.sh --acwt 0.2 --cmd "$decode_cmd" \
 --transform-dir exp/tri3_ali --boost 0.1 --drop-frames true \
 data/train data/lang exp/sgmm2_4_ali exp/sgmm2_4_denlats exp/sgmm2_4_mmi_b0.1

for iter in 1 2 3 4; do
  steps/decode_sgmm2_rescore.sh --cmd "$decode_cmd" --iter $iter \
   --transform-dir exp/tri3/decode_dev data/lang_test_bg data/dev \
   exp/sgmm2_4/decode_dev exp/sgmm2_4_mmi_b0.1/decode_dev_it$iter

  steps/decode_sgmm2_rescore.sh --cmd "$decode_cmd" --iter $iter \
   --transform-dir exp/tri3/decode_test data/lang_test_bg data/test \
   exp/sgmm2_4/decode_test exp/sgmm2_4_mmi_b0.1/decode_test_it$iter
done

echo ============================================================================
echo "               DNN Hybrid Training & Decoding (Karel's recipe)            "
echo ============================================================================

local/nnet/run_dnn.sh

echo ============================================================================
echo "Finished successfully on" `date`
echo ============================================================================

exit 0