run_tdnn_opgru_1a.sh
13.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/bin/bash
# Copyright 2017 University of Chinese Academy of Sciences (UCAS) Gaofeng Cheng
# Apache 2.0
# This is based on TDNN_LSTM_1b (from egs/swbd/s5c), but using the NormOPGRU to replace the LSTMP,
# and adding chunk-{left,right}-context-initial=0
# Different from the vanilla OPGRU, Norm-OPGRU adds batchnorm in its output (forward direction)
# and renorm in its recurrence. Experiments show that the TDNN-NormOPGRU could achieve similar
# results than TDNN-LSTMP and BLSTMP in both large or small data sets (80 ~ 2300 Hrs).
# ./local/chain/compare_wer_general.sh tdnn_lstm_1a_sp tdnn_lstm_1b_sp tdnn_opgru_1a_sp
# num parameter 39.7M 39.7M 34.9M
# System tdnn_lstm_1a_sp tdnn_lstm_1b_sp tdnn_opgru_1a_sp
# WER on eval2000(tg) 12.3 12.3 11.7
# [looped:] 12.2 12.3 11.6
# WER on eval2000(fg) 12.1 12.0 11.7
# [looped:] 12.1 12.2 11.6
# WER on rt03(tg) 11.6 11.4 11.0
# [looped:] 11.6 11.6 11.0
# WER on rt03(fg) 11.3 11.1 10.7
# [looped:] 11.3 11.3 10.8
# Final train prob -0.074 -0.087 -0.085
# Final valid prob -0.084 -0.088 -0.093
# Final train prob (xent) -0.882 -1.015 -0.972
# Final valid prob (xent) -0.9393 -0.9837 -1.0275
#./steps/info/chain_dir_info.pl exp/chain/tdnn_opgru_1a_sp
#exp/chain/tdnn_opgru_1a_sp: num-iters=2384 nj=3..16 num-params=34.9M dim=40+100->6149 combine=-0.096->-0.095 (over 8)
#xent:train/valid[1587,2383,final]=(-1.46,-0.960,-0.972/-1.49,-1.02,-1.03)
#logprob:train/valid[1587,2383,final]=(-0.114,-0.086,-0.085/-0.114,-0.094,-0.093)
# online results
# Eval2000
# %WER 14.7 | 2628 21594 | 87.3 8.5 4.2 2.0 14.7 50.8 | exp/chain/tdnn_opgru_1a_sp_online/decode_eval2000_fsh_sw1_tg/score_7_0.0/eval2000_hires.ctm.callhm.filt.sys
# %WER 11.7 | 4459 42989 | 89.9 7.0 3.1 1.7 11.7 48.1 | exp/chain/tdnn_opgru_1a_sp_online/decode_eval2000_fsh_sw1_tg/score_7_0.0/eval2000_hires.ctm.filt.sys
# %WER 8.3 | 1831 21395 | 92.7 4.9 2.4 1.0 8.3 42.2 | exp/chain/tdnn_opgru_1a_sp_online/decode_eval2000_fsh_sw1_tg/score_10_0.0/eval2000_hires.ctm.swbd.filt.sys
# %WER 14.7 | 2628 21594 | 87.4 8.5 4.1 2.1 14.7 50.5 | exp/chain/tdnn_opgru_1a_sp_online/decode_eval2000_fsh_sw1_fg/score_7_0.0/eval2000_hires.ctm.callhm.filt.sys
# %WER 11.6 | 4459 42989 | 90.1 6.9 3.0 1.7 11.6 47.6 | exp/chain/tdnn_opgru_1a_sp_online/decode_eval2000_fsh_sw1_fg/score_7_0.0/eval2000_hires.ctm.filt.sys
# %WER 8.1 | 1831 21395 | 92.9 4.8 2.3 1.1 8.1 41.8 | exp/chain/tdnn_opgru_1a_sp_online/decode_eval2000_fsh_sw1_fg/score_10_0.0/eval2000_hires.ctm.swbd.filt.sys
# online results
# RT03
# %WER 8.9 | 3970 36721 | 92.1 5.3 2.5 1.1 8.9 37.3 | exp/chain/tdnn_opgru_1a_sp_online/decode_rt03_fsh_sw1_tg/score_7_0.0/rt03_hires.ctm.fsh.filt.sys
# %WER 11.0 | 8420 76157 | 90.1 6.1 3.8 1.1 11.0 41.0 | exp/chain/tdnn_opgru_1a_sp_online/decode_rt03_fsh_sw1_tg/score_9_0.0/rt03_hires.ctm.filt.sys
# %WER 13.0 | 4450 39436 | 88.3 7.7 4.0 1.3 13.0 43.1 | exp/chain/tdnn_opgru_1a_sp_online/decode_rt03_fsh_sw1_tg/score_8_0.0/rt03_hires.ctm.swbd.filt.sys
# %WER 8.6 | 3970 36721 | 92.4 4.9 2.8 1.0 8.6 37.2 | exp/chain/tdnn_opgru_1a_sp_online/decode_rt03_fsh_sw1_fg/score_8_0.0/rt03_hires.ctm.fsh.filt.sys
# %WER 10.8 | 8420 76157 | 90.4 6.2 3.4 1.2 10.8 40.0 | exp/chain/tdnn_opgru_1a_sp_online/decode_rt03_fsh_sw1_fg/score_8_0.0/rt03_hires.ctm.filt.sys
# %WER 12.8 | 4450 39436 | 88.6 7.5 4.0 1.4 12.8 42.5 | exp/chain/tdnn_opgru_1a_sp_online/decode_rt03_fsh_sw1_fg/score_8_0.0/rt03_hires.ctm.swbd.filt.sys
set -e
# configs for 'chain'
stage=12
train_stage=-10
get_egs_stage=-10
speed_perturb=true
dir=exp/chain/tdnn_opgru_1a # Note: _sp will get added to this if $speed_perturb == true.
decode_iter=
decode_dir_affix=
dropout_schedule='0,0@0.20,0.2@0.50,0'
# training options
leftmost_questions_truncate=-1
chunk_width=150
chunk_left_context=40
chunk_right_context=0
xent_regularize=0.025
self_repair_scale=0.00001
label_delay=5
# decode options
extra_left_context=50
extra_right_context=0
frames_per_chunk=
remove_egs=false
common_egs_dir=
affix=
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet3 setup, and you can skip them by setting "--stage 8" if you have already
# run those things.
suffix=
if [ "$speed_perturb" == "true" ]; then
suffix=_sp
fi
dir=${dir}$suffix
build_tree_train_set=train_nodup
train_set=train_nodup_sp
build_tree_ali_dir=exp/tri5a_ali
treedir=exp/chain/tri6_tree
lang=data/lang_chain
# if we are using the speed-perturbed data we need to generate
# alignments for it.
local/nnet3/run_ivector_common.sh --stage $stage \
--speed-perturb $speed_perturb \
--generate-alignments $speed_perturb || exit 1;
if [ $stage -le 9 ]; then
# Get the alignments as lattices (gives the CTC training more freedom).
# use the same num-jobs as the alignments
nj=$(cat $build_tree_ali_dir/num_jobs) || exit 1;
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \
data/lang exp/tri5a exp/tri5a_lats_nodup$suffix
rm exp/tri5a_lats_nodup$suffix/fsts.*.gz # save space
fi
if [ $stage -le 10 ]; then
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
rm -rf $lang
cp -r data/lang $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi
if [ $stage -le 11 ]; then
# Build a tree using our new topology.
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
--leftmost-questions-truncate $leftmost_questions_truncate \
--context-opts "--context-width=2 --central-position=1" \
--cmd "$train_cmd" 11000 data/$build_tree_train_set $lang $build_tree_ali_dir $treedir
fi
if [ $stage -le 12 ]; then
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}')
learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
gru_opts="dropout-per-frame=true dropout-proportion=0.0 "
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-2,-1,0,1,2, ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
# the first splicing is moved before the lda layer, so no splicing here
relu-batchnorm-layer name=tdnn1 dim=1024
relu-batchnorm-layer name=tdnn2 input=Append(-1,0,1) dim=1024
relu-batchnorm-layer name=tdnn3 input=Append(-1,0,1) dim=1024
# check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults
norm-opgru-layer name=opgru1 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $gru_opts
relu-batchnorm-layer name=tdnn4 input=Append(-3,0,3) dim=1024
relu-batchnorm-layer name=tdnn5 input=Append(-3,0,3) dim=1024
norm-opgru-layer name=opgru2 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $gru_opts
relu-batchnorm-layer name=tdnn6 input=Append(-3,0,3) dim=1024
relu-batchnorm-layer name=tdnn7 input=Append(-3,0,3) dim=1024
norm-opgru-layer name=opgru3 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $gru_opts
## adding the layers for chain branch
output-layer name=output input=opgru3 output-delay=$label_delay include-log-softmax=false dim=$num_targets max-change=1.5
# adding the layers for xent branch
# This block prints the configs for a separate output that will be
# trained with a cross-entropy objective in the 'chain' models... this
# has the effect of regularizing the hidden parts of the model. we use
# 0.5 / args.xent_regularize as the learning rate factor- the factor of
# 0.5 / args.xent_regularize is suitable as it means the xent
# final-layer learns at a rate independent of the regularization
# constant; and the 0.5 was tuned so as to make the relative progress
# similar in the xent and regular final layers.
output-layer name=output-xent input=opgru3 output-delay=$label_delay dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 13 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
fi
steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.00005 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--trainer.num-chunk-per-minibatch 64 \
--trainer.frames-per-iter 1200000 \
--trainer.max-param-change 2.0 \
--trainer.num-epochs 4 \
--trainer.optimization.shrink-value 0.99 \
--trainer.optimization.num-jobs-initial 3 \
--trainer.optimization.num-jobs-final 16 \
--trainer.optimization.initial-effective-lrate 0.001 \
--trainer.optimization.final-effective-lrate 0.0001 \
--trainer.dropout-schedule $dropout_schedule \
--trainer.optimization.momentum 0.0 \
--trainer.deriv-truncate-margin 8 \
--egs.stage $get_egs_stage \
--egs.opts "--frames-overlap-per-eg 0" \
--egs.chunk-width $chunk_width \
--egs.chunk-left-context $chunk_left_context \
--egs.chunk-right-context $chunk_right_context \
--egs.chunk-left-context-initial 0 \
--egs.chunk-right-context-final 0 \
--egs.dir "$common_egs_dir" \
--cleanup.remove-egs $remove_egs \
--feat-dir data/${train_set}_hires \
--tree-dir $treedir \
--lat-dir exp/tri5a_lats_nodup$suffix \
--dir $dir || exit 1;
fi
if [ $stage -le 14 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 data/lang_fsh_sw1_tg $dir $dir/graph_fsh_sw1_tg
fi
decode_suff=fsh_sw1_tg
graph_dir=$dir/graph_fsh_sw1_tg
if [ $stage -le 15 ]; then
rm $dir/.error 2>/dev/null || true
[ -z $extra_left_context ] && extra_left_context=$chunk_left_context;
[ -z $extra_right_context ] && extra_right_context=$chunk_right_context;
[ -z $frames_per_chunk ] && frames_per_chunk=$chunk_width;
if [ ! -z $decode_iter ]; then
iter_opts=" --iter $decode_iter "
fi
for decode_set in rt03 eval2000; do
(
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--nj 50 --cmd "$decode_cmd" $iter_opts \
--extra-left-context $extra_left_context \
--extra-right-context $extra_right_context \
--extra-left-context-initial 0 \
--extra-right-context-final 0 \
--frames-per-chunk "$frames_per_chunk" \
--online-ivector-dir exp/nnet3/ivectors_${decode_set} \
$graph_dir data/${decode_set}_hires \
$dir/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_${decode_suff} || exit 1;
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
data/lang_fsh_sw1_{tg,fg} data/${decode_set}_hires \
$dir/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_fsh_sw1_{tg,fg} || exit 1;
) || touch $dir/.error &
done
wait
if [ -f $dir/.error ]; then
echo "$0: something went wrong in decoding"
exit 1
fi
fi
test_online_decoding=true
lang=data/lang_fsh_sw1_tg
if $test_online_decoding && [ $stage -le 16 ]; then
# note: if the features change (e.g. you add pitch features), you will have to
# change the options of the following command line.
steps/online/nnet3/prepare_online_decoding.sh \
--mfcc-config conf/mfcc_hires.conf \
$lang exp/nnet3/extractor $dir ${dir}_online
rm $dir/.error 2>/dev/null || true
for decode_set in rt03 eval2000; do
(
# note: we just give it "$decode_set" as it only uses the wav.scp, the
# feature type does not matter.
steps/online/nnet3/decode.sh --nj 50 --cmd "$decode_cmd" $iter_opts \
--acwt 1.0 --post-decode-acwt 10.0 \
$graph_dir data/${decode_set}_hires \
${dir}_online/decode_${decode_set}${decode_iter:+_$decode_iter}_${decode_suff} || exit 1;
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
data/lang_fsh_sw1_{tg,fg} data/${decode_set}_hires \
${dir}_online/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_fsh_sw1_{tg,fg} || exit 1;
) || touch $dir/.error &
done
wait
if [ -f $dir/.error ]; then
echo "$0: something went wrong in online decoding"
exit 1
fi
fi
exit 0;