run.sh
6.86 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#!/bin/bash
#
# Copyright 2018, Yuan-Fu Liao, National Taipei University of Technology, yfliao@mail.ntut.edu.tw
#
# Before you run this recipe, please apply, download and put or make a link of the corpus under this folder (folder name: "NER-Trs-Vol1").
# For more detail, please check:
# 1. Formosa Speech in the Wild (FSW) project (https://sites.google.com/speech.ntut.edu.tw/fsw/home/corpus)
# 2. Formosa Speech Recognition Challenge (FSW) 2018 (https://sites.google.com/speech.ntut.edu.tw/fsw/home/challenge)
stage=-2
num_jobs=20
train_dir=NER-Trs-Vol1/Train
eval_dir=NER-Trs-Vol1-Eval
eval_key_dir=NER-Trs-Vol1-Eval-Key
# shell options
set -eo pipefail
. ./cmd.sh
. ./utils/parse_options.sh
# configure number of jobs running in parallel, you should adjust these numbers according to your machines
# data preparation
if [ $stage -le -2 ]; then
# Lexicon Preparation,
echo "$0: Lexicon Preparation"
local/prepare_dict.sh || exit 1;
# Data Preparation
echo "$0: Data Preparation"
local/prepare_data.sh --train-dir $train_dir --eval-dir $eval_dir --eval-key-dir $eval_key_dir || exit 1;
# Phone Sets, questions, L compilation
echo "$0: Phone Sets, questions, L compilation Preparation"
rm -rf data/lang
utils/prepare_lang.sh --position-dependent-phones false data/local/dict \
"<SIL>" data/local/lang data/lang || exit 1;
# LM training
echo "$0: LM training"
rm -rf data/local/lm/3gram-mincount
local/train_lms.sh || exit 1;
# G compilation, check LG composition
echo "$0: G compilation, check LG composition"
utils/format_lm.sh data/lang data/local/lm/3gram-mincount/lm_unpruned.gz \
data/local/dict/lexicon.txt data/lang_test || exit 1;
fi
# Now make MFCC plus pitch features.
# mfccdir should be some place with a largish disk where you
# want to store MFCC features.
mfccdir=mfcc
# mfcc
if [ $stage -le -1 ]; then
echo "$0: making mfccs"
for x in train test eval; do
steps/make_mfcc_pitch.sh --cmd "$train_cmd" --nj $num_jobs data/$x exp/make_mfcc/$x $mfccdir || exit 1;
steps/compute_cmvn_stats.sh data/$x exp/make_mfcc/$x $mfccdir || exit 1;
utils/fix_data_dir.sh data/$x || exit 1;
done
fi
# mono
if [ $stage -le 0 ]; then
echo "$0: train mono model"
# Make some small data subsets for early system-build stages.
echo "$0: make training subsets"
utils/subset_data_dir.sh --shortest data/train 3000 data/train_mono
# train mono
steps/train_mono.sh --boost-silence 1.25 --cmd "$train_cmd" --nj $num_jobs \
data/train_mono data/lang exp/mono || exit 1;
# Get alignments from monophone system.
steps/align_si.sh --boost-silence 1.25 --cmd "$train_cmd" --nj $num_jobs \
data/train data/lang exp/mono exp/mono_ali || exit 1;
# Monophone decoding
(
utils/mkgraph.sh data/lang_test exp/mono exp/mono/graph || exit 1;
steps/decode.sh --cmd "$decode_cmd" --config conf/decode.config --nj $num_jobs \
exp/mono/graph data/test exp/mono/decode_test
)&
fi
# tri1
if [ $stage -le 1 ]; then
echo "$0: train tri1 model"
# train tri1 [first triphone pass]
steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" \
2500 20000 data/train data/lang exp/mono_ali exp/tri1 || exit 1;
# align tri1
steps/align_si.sh --cmd "$train_cmd" --nj $num_jobs \
data/train data/lang exp/tri1 exp/tri1_ali || exit 1;
# decode tri1
(
utils/mkgraph.sh data/lang_test exp/tri1 exp/tri1/graph || exit 1;
steps/decode.sh --cmd "$decode_cmd" --config conf/decode.config --nj $num_jobs \
exp/tri1/graph data/test exp/tri1/decode_test
)&
fi
# tri2
if [ $stage -le 2 ]; then
echo "$0: train tri2 model"
# train tri2 [delta+delta-deltas]
steps/train_deltas.sh --cmd "$train_cmd" \
2500 20000 data/train data/lang exp/tri1_ali exp/tri2 || exit 1;
# align tri2b
steps/align_si.sh --cmd "$train_cmd" --nj $num_jobs \
data/train data/lang exp/tri2 exp/tri2_ali || exit 1;
# decode tri2
(
utils/mkgraph.sh data/lang_test exp/tri2 exp/tri2/graph
steps/decode.sh --cmd "$decode_cmd" --config conf/decode.config --nj $num_jobs \
exp/tri2/graph data/test exp/tri2/decode_test
)&
fi
# tri3a
if [ $stage -le 3 ]; then
echo "$-: train tri3 model"
# Train tri3a, which is LDA+MLLT,
steps/train_lda_mllt.sh --cmd "$train_cmd" \
2500 20000 data/train data/lang exp/tri2_ali exp/tri3a || exit 1;
# decode tri3a
(
utils/mkgraph.sh data/lang_test exp/tri3a exp/tri3a/graph || exit 1;
steps/decode.sh --cmd "$decode_cmd" --nj $num_jobs --config conf/decode.config \
exp/tri3a/graph data/test exp/tri3a/decode_test
)&
fi
# tri4
if [ $stage -le 4 ]; then
echo "$0: train tri4 model"
# From now, we start building a more serious system (with SAT), and we'll
# do the alignment with fMLLR.
steps/align_fmllr.sh --cmd "$train_cmd" --nj $num_jobs \
data/train data/lang exp/tri3a exp/tri3a_ali || exit 1;
steps/train_sat.sh --cmd "$train_cmd" \
2500 20000 data/train data/lang exp/tri3a_ali exp/tri4a || exit 1;
# align tri4a
steps/align_fmllr.sh --cmd "$train_cmd" --nj $num_jobs \
data/train data/lang exp/tri4a exp/tri4a_ali
# decode tri4a
(
utils/mkgraph.sh data/lang_test exp/tri4a exp/tri4a/graph
steps/decode_fmllr.sh --cmd "$decode_cmd" --nj $num_jobs --config conf/decode.config \
exp/tri4a/graph data/test exp/tri4a/decode_test
)&
fi
# tri5
if [ $stage -le 5 ]; then
echo "$0: train tri5 model"
# Building a larger SAT system.
steps/train_sat.sh --cmd "$train_cmd" \
3500 100000 data/train data/lang exp/tri4a_ali exp/tri5a || exit 1;
# align tri5a
steps/align_fmllr.sh --cmd "$train_cmd" --nj $num_jobs \
data/train data/lang exp/tri5a exp/tri5a_ali || exit 1;
# decode tri5
(
utils/mkgraph.sh data/lang_test exp/tri5a exp/tri5a/graph || exit 1;
steps/decode_fmllr.sh --cmd "$decode_cmd" --nj $num_jobs --config conf/decode.config \
exp/tri5a/graph data/test exp/tri5a/decode_test || exit 1;
)&
fi
# nnet3 tdnn models
# commented out by default, since the chain model is usually faster and better
#if [ $stage -le 6 ]; then
# echo "$0: train nnet3 model"
# local/nnet3/run_tdnn.sh
#fi
# chain model
if [ $stage -le 7 ]; then
# The iVector-extraction and feature-dumping parts coulb be skipped by setting "--train_stage 7"
echo "$0: train chain model"
local/chain/run_tdnn.sh
fi
# getting results (see RESULTS file)
if [ $stage -le 8 ]; then
echo "$0: extract the results"
for test_set in test eval; do
echo "WER: $test_set"
for x in exp/*/decode_${test_set}*; do [ -d $x ] && grep WER $x/wer_* | utils/best_wer.sh; done 2>/dev/null
for x in exp/*/*/decode_${test_set}*; do [ -d $x ] && grep WER $x/wer_* | utils/best_wer.sh; done 2>/dev/null
echo
echo "CER: $test_set"
for x in exp/*/decode_${test_set}*; do [ -d $x ] && grep WER $x/cer_* | utils/best_wer.sh; done 2>/dev/null
for x in exp/*/*/decode_${test_set}*; do [ -d $x ] && grep WER $x/cer_* | utils/best_wer.sh; done 2>/dev/null
echo
done
fi
# finish
echo "$0: all done"
exit 0;