run_lstm.sh 1.84 KB
#!/bin/bash

# Copyright 2015 QCRI (author: Ahmed Ali)
# Apache 2.0
# This example script trains a LSTM network on FBANK features.
# The LSTM code originally comes from tedlium 

. ./cmd.sh
. ./path.sh

dev=data-fbank/test
train=data-fbank/train

dev_original=data/test
train_original=data/train

gmm=exp/tri3b

stage=0
. utils/parse_options.sh || exit 1;

# Make the FBANK features
[ ! -e $dev ] && if [ $stage -le 0 ]; then
  # Dev set
  utils/copy_data_dir.sh $dev_original $dev || exit 1; rm $dev/{cmvn,feats}.scp
  steps/make_fbank_pitch.sh --nj 10 --cmd "$train_cmd" \
     $dev $dev/log $dev/data || exit 1;
  steps/compute_cmvn_stats.sh $dev $dev/log $dev/data || exit 1;
  # Training set
  utils/copy_data_dir.sh $train_original $train || exit 1; rm $train/{cmvn,feats}.scp
  steps/make_fbank_pitch.sh --nj 10 --cmd "$train_cmd" \
     $train $train/log $train/data || exit 1;
  steps/compute_cmvn_stats.sh $train $train/log $train/data || exit 1;
  # Split the training set
  utils/subset_data_dir_tr_cv.sh --cv-spk-percent 10 $train ${train}_tr90 ${train}_cv10
fi

if [ $stage -le 1 ]; then
  # Train the DNN optimizing per-frame cross-entropy.
  dir=exp/lstm4f
  ali=${gmm}_ali

  # Train
  $cuda_cmd $dir/log/train_nnet.log \
    steps/nnet/train.sh --network-type lstm --learn-rate 0.00001 \
      --cmvn-opts "--norm-means=true --norm-vars=true" --feat-type plain --splice 0 \
      --proto-opts "--clip-gradient 5.0" \
      --train-tool-opts "--momentum 0.9 --halving-factor 0.65" \
      --train-tool "nnet-train-lstm-streams --num-stream=4 --targets-delay=5" \
    ${train}_tr90 ${train}_cv10 data/lang $ali $ali $dir || exit 1;

  # Decode (reuse HCLG graph)
  steps/nnet/decode.sh --nj 20 --cmd "$decode_cmd" --config conf/decode_dnn.config --acwt 0.1 \
    $gmm/graph $dev $dir/decode_test || exit 1;
fi

# TODO : sequence training,

echo LSTM FBANK success
exit 0