run_tdnn_1a.sh 2.9 KB
#!/bin/bash

# started from tedlium recipe with few edits

set -e -o pipefail -u

# First the options that are passed through to run_ivector_common.sh
# (some of which are also used in this script directly).
stage=0
nj=30
decode_nj=30
min_seg_len=1.55
train_set=train
gmm=tri2b  # this is the source gmm-dir for the data-type of interest; it
                  # should have alignments for the specified training data.
num_threads_ubm=32
nnet3_affix=_cleaned  # cleanup affix for exp dirs, e.g. _cleaned
tdnn_affix=  #affix for TDNN directory e.g. "a" or "b", in case we change the configuration.

# Options which are not passed through to run_ivector_common.sh
train_stage=-10
splice_indexes="-2,-1,0,1,2 -1,2 -3,3 -7,2 -3,3 0 0"
remove_egs=true
relu_dim=850
num_epochs=3

. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh

if ! cuda-compiled; then
  cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi

local/nnet3/run_ivector_common.sh --stage $stage \
                                  --nj $nj \
                                  --min-seg-len $min_seg_len \
                                  --train-set $train_set \
                                  --gmm $gmm \
                                  --num-threads-ubm $num_threads_ubm \
                                  --nnet3-affix "$nnet3_affix"



gmm_dir=exp/${gmm}
graph_dir=$gmm_dir/graph
ali_dir=exp/${gmm}_ali_${train_set}_sp_comb
dir=exp/nnet3${nnet3_affix}/tdnn${tdnn_affix}_sp
train_data_dir=data/${train_set}_sp_hires_comb
train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb


for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
     $graph_dir/HCLG.fst $ali_dir/ali.1.gz $gmm_dir/final.mdl; do
  [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
done


if [ $stage -le 12 ]; then
  if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
    utils/create_split_dir.pl \
     /export/b0{3,4,5,6}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5_r2/$dir/egs/storage $dir/egs/storage
  fi
   
  steps/nnet3/tdnn/train.sh --stage $train_stage \
    --num-epochs $num_epochs --num-jobs-initial 2 --num-jobs-final 2 \
    --splice-indexes "$splice_indexes" \
    --feat-type raw \
    --online-ivector-dir ${train_ivector_dir} \
    --cmvn-opts "--norm-means=false --norm-vars=false" \
    --initial-effective-lrate 0.0015 --final-effective-lrate 0.00015 \
    --cmd "$decode_cmd" \
    --relu-dim "$relu_dim" \
    --remove-egs "$remove_egs" \
    $train_data_dir data/lang $ali_dir $dir
fi

if [ $stage -le 13 ]; then
  steps/nnet3/decode.sh --nj $decode_nj --cmd "$decode_cmd"  --num-threads 4 \
    --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_test_hires \
    ${graph_dir} data/test_hires ${dir}/decode || exit 1 
fi

exit 0;