make_unicode_lexicon.py
26.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2016 Johns Hopkins University (Author: Matthew Wiesner)
# Apache 2.0
# ============ Make unicode-based graphemic lexicon =============
#
# This script takes a list of either words or words and corresponding
# morphemes and returns a graphemic lexicon in the "standard" kaldi format,
# i.e. a single word with its correpsonding pronunciation per line; multiple
# pronunciations of a word are listed on separate lines.
#
# Example:
# word w o r d
# word w1 o r d1
# anotherword a n o t h e r w o r d
#
# It also creates a mapping file describing how each grapheme is transformed
# into graphemic acoustic units. It has the following form:
#
# Example:
# በ b a
# â a_combiningcircumflex
# ü ucombiningdiaeresis
# b b
# c c
#
# When the script is called with the option (--apply-map mapfile) the map
# provided in "mapfile" is used to expand the words in the provided wordlist
# into graphemic-acoustic units and the resulting lexicon is output along with
# the input mapfile used.
#
#
# When the script is called with the option (-V LOGDIR) this is interpreted as
# the directory into which two log files are stored. These log files contain
# information about grapheme frequencies in the vocabulary as well as a table
# that stores the information about how to map graphemes into the graphemic
# acoustic units used in the lexicon -- the atoms used to describe the
# pronunciations of words in the lexicon. The table also stores information
# about the different fields of the standard unicode description of a grapheme.
# This description contains information about the case (CAPITAL , SMALL),
# writing system (LATIN, ARABIC, etc.), type of grapheme (LETTER, SYLLABLE,
# VOWEL SIGN, etc.), the name of the grapheme (a, b, aleph, lambda, etc.), and
# a description of any diacritics modifying the "base" grapheme. Empty fields
# are denoted by ''. These modifying diacritics are just combining characters
# in the unicode NFKD form of each grapheme's unicode character description.
# The table looks as follows
# --------------------------------------------------------------------
# CASE CHAR_TYPE LANGUAGE MAP0 MAP1 NAME SYMBOL TAG TAG0 TAG1
# SMALL LETTER LATIN u '' U u '' '' ''
# CAPITAL LETTER LATIN u '' U U '' '' ''
# SMALL LETTER LATIN ucombiningacuteaccent '' U ú WITH ACUTE COMBINING ACUTE ACCENT ''
# SMALL LETTER LATIN u_combiningdiaeresis '' U ü WITH DIAERESIS COMBINING DIAERESIS ''
# '' SYLLABLE ETHIOPIC b a BA በ '' '' ''
# SMALL LETTER LATIN a_combiningbreve_combiningacuteaccent '' A ắ WITH BREVE AND ACUTE COMBINING BREVE COMBINING ACUTE ACCENT
# ---------------------------------------------------------------------
# Below is a summary of the fields and their meanings:
# -----------------------------------------------------
# CASE: Case of the grapheme (CAPITAL, SMALL)
# CHAR_TYPE: The type of grapheme (LETTER, SYLLABLE, VOWEL SIGN, etc.).
# This field sometimes determines the way the character is mapped;
# a syllable for instance would result in a one-to-many mapping.
#
# LANGUAGE: The script from which the grapheme originated.
# Examples are LATIN, ETHIOPIC, or KATAKANA.
# MAP0: The first acoustic unit to which the grapheme maps.
# MAP1, MAP2, ...: The subsequent acoustic units to which a given grapheme maps.
# NAME: The name of the base grapheme in the unicode description.
# SYMBOL: The actual grapheme.
# TAG: The unicode description of any diacritics attached to the base
# grapheme in the unicode description.
# TAG0: The name of the first combining character in the NFKD form for the
# unicode character.
# TAG1, TAG2, ...: The name of subsequent combining characters in the NFKD
# form of the grapheme.
# -------------------------------------------------------------
#
# The mapping is assumed (for now) to be one-to-one or one-to-many. If a single
# grapheme gets mapped to multiple acoustic units, the units are stored in the
# the fields MAP0, then MAP1, MAP2, etc., depending on the number of acoustic
# units generated by the grapheme. This normally occurs for syllabaries or
# abugidas where each grapheme represents a syllable, and hence more than a
# single phoneme.
# Similarly a base grapheme may have more than one diacritic. The name of each
# diactritic, represented as a combining character in the NFKD baseform, is
# stored in order in the fields TAG0, TAG1, etc.. A field is present in the
# table if any grapheme occurring in the vocabulary has said field.
# The other log file shows each grapheme in the vocabulary, it's relative
# frequency, and the threshold frequency above which each grapheme-diactritic
# combination is treated as a separate unit. We include the use of tags on
# acoustic units for sufficiently rare grapheme-diacritic combinations. They
# are represented by the name of the base grapheme followed by an underscore
# and the name of the combining character. The threshold for deciding which
# grapheme-diacritic combinations result in tagged units rather than a
# completely distinct unit is an option to the script (-T). Using -T 1.0,
# results in all combining characters being treated as tags. Using -T 0.0 means
# that no acoustic units are tagged and each grapheme-combining character
# combination results in a distinct acoustic unit.
# ===============================================================
# Import Statements
from __future__ import print_function
from __future__ import division
import codecs
import argparse
import unicodedata
import os
import re
import sys
import numpy as np
def main():
args = parse_input()
baseforms = get_word_list(args.word2baseform)
if args.apply_map:
grapheme_map = {}
with codecs.open(args.apply_map, "r", encoding="utf-8") as f:
for line in f:
try:
line_vals = line.strip('\n').split(' ', 1)
grapheme_map[line_vals[0]] = line_vals[1]
except IndexError:
grapheme_map[line_vals[0]] = ""
encoded_transcription = apply_map(grapheme_map, baseforms)
else:
unicode_transcription = baseform2unicode(baseforms)
encoded_transcription, table, grapheme_map = encode(unicode_transcription,
args.tag_percentage,
log=args.verbose)
if args.verbose:
if not os.path.exists(args.verbose):
os.makedirs(args.verbose)
write_table(table, os.path.join(args.verbose, "grapheme_table.txt"))
# Extract nonspeech lexicon (e.g. <laugh>, <silence>, <cough>)
try:
silence_lexicon = {}
with codecs.open(args.silence_lexicon, "r", "utf-8") as f:
for line in f:
line_vals = line.strip().split(None, 1)
silence_lexicon[line_vals[0]] = line_vals[1]
except (IOError, TypeError):
pass
# Extract dictionary of extraspeech pronunciations (normally <hes>)
try:
extra_lexicon = {}
with codecs.open(args.extra_lexicon, "r", "utf-8") as f:
for line in f:
line_vals = line.strip().split(None, 1)
extra_lexicon[line_vals[0]] = line_vals[1]
except (IOError, TypeError):
pass
write_map(grapheme_map, args.map_out)
write_lexicon(baseforms, encoded_transcription, args.lexicon_out,
sil_lex=silence_lexicon, extra_lex=extra_lexicon)
def parse_input():
'''
Parse commandline input.
'''
if len(sys.argv[1:]) == 0:
print("Usage: ./make_unicode_lexicon.py [opts] lex_in lex_out")
sys.exit(1)
parser = argparse.ArgumentParser()
parser.add_argument("word2baseform", help="File with word list optionally"
" paired with a baseform. 1 word per line with the "
"baseform separated by a tab")
parser.add_argument("lexicon_out", help="Path of output graphemc lexicon")
parser.add_argument("map_out", help="Path of output "
"grapheme-to-graphemic-acoustic units map")
parser.add_argument("-T", "--tag-percentage", help="Percentage of least"
" frequently occurring graphemes to be tagged",
type=float, action="store", default=0.1)
parser.add_argument("--silence-lexicon", help="File with silence words "
"and pronunciations", action="store", default=None)
parser.add_argument("--extra-lexicon", help="File with extra speech words "
"and pronunciations", action="store", default=None)
parser.add_argument("-V", "--verbose", help="Directory for storing useful "
"log files", action="store", default=None)
parser.add_argument("--apply-map", help="Map to apply to wordlist",
action="store", default=None)
args = parser.parse_args()
return args
def _read_word_list_line(line):
try:
word2baseform = line.strip().split(None, 1)
return (word2baseform[0], word2baseform[1])
except IndexError:
return (word2baseform[0], word2baseform[0])
def get_word_list(input_file):
'''
Read from input file the words and potential baseforms.
Arguments: input_file -- path to the input word list optionally with
baseforms (1 per line word baseform).
Output:
words -- list of tuples (word, baseform)
'''
with codecs.open(input_file, "r", "utf-8") as f:
words = []
for line in f:
w = _read_word_list_line(line)
words.append(w)
return words
def baseform2unicode(baseforms):
'''
Convert each baseform in the list, baseforms, to a parsed unicode
description stored as a list of lists of dictionaries.
unicode_transcription = [
[{'NAME':'word1_grapheme1','FIELD1':'FIELD1_VAL',...},
{'NAME':'word1_grapheme2','FIELD1':'FIELD1_VAL',...},...],
[{'NAME':'word2_grapheme1,'FIELD1:'FIELD1_VAL',...},
{},...]
,...,[]]
Arguments:
baseforms -- List of tuples (word, baseform)
e.g. baseforms = get_word_list()
Output:
unicode_transcription -- See above description
'''
# Regular expression for parsing unicode descriptions
pattern = re.compile(
r"(?P<LANGUAGE>[^\s]+)\s"
r"(?P<CASE>SMALL\s|CAPITAL\s)?(?P<CHAR_TYPE>"
"(?:SUBJOINED )?LETTER |(?:INDEPENDENT VOWEL )"
r"|(?:VOWEL SIGN )|VOWEL |SIGN "
r"|CHARACTER |JONGSEONG |CHOSEONG |SYMBOL |MARK |DIGIT "
r"|SEMIVOWEL |TONE |SYLLABLE |LIGATURE |KATAKANA )"
r"(?P<NAME>((?!WITH).)+)"
r"(?P<TAG>WITH .+)?"
)
# For each graphemic baseform generate a parsed unicode description
unicode_transcription = []
for w, bf in baseforms:
# Initialize empty list of words
baseform_transcription = []
# For each grapheme parse the unicode description
for graph in bf:
unicode_desc = unicodedata.name(graph)
# Use the canonical unicode decomposition
tags = unicodedata.normalize('NFD', graph)
match_obj = pattern.match(unicode_desc)
# Grapheme's unicode description is non-standard
if(not match_obj):
# Underscore, dash, hastag have special meaning
if(graph in ("_", "-", "#")):
graph_dict = {
'CHAR_TYPE': 'LINK',
'SYMBOL': graph,
'NAME': graph
}
# The grapheme is whitespace
elif(unicode_desc in ("ZERO WIDTH SPACE",
"ZERO WIDTH NON-JOINER",
"ZERO WIDTH JOINER",
"SPACE")):
# Ignore whitespace
continue
else:
graph_dict = {'SYMBOL': graph, 'NAME': 'NOT_FOUND'}
# Grapheme's unicode description is standard
else:
graph_dict = match_obj.groupdict()
graph_dict["SYMBOL"] = graph
# Add tags to dictionary (The first element of tags is actually
# the base grapheme, so we only check all tags after the first.
if(len(tags) > 1):
for i, t in enumerate(tags[1:]):
graph_dict["TAG" + str(i)] = unicodedata.name(t)
# Add grapheme unicode description dictionary to baseform list
baseform_transcription.append(graph_dict)
# Add baseform transcription to unicode transcription list
unicode_transcription.append(baseform_transcription)
return unicode_transcription
def encode(unicode_transcription, tag_percentage, log=False):
'''
Arguments:
unicode_transcription -- a list of words whose graphemes are
respresented as a list of dictionaries whose
fields contain information about parsed
unicode descriptions.
tag_percentage -- percent of least frequent graphemes to tag
log -- optional printing
Outputs:
encoded_transcription -- baseforms mapped to the graphemeic
acoustic units
'''
# Constants
VOWELS = "AEIOU"
SKIP = "/()"
table = []
graphemes = []
encoded_transcription = []
# Accumulate grapheme statistics over corpus at some point. For now just
# use the lexicon word list. For estimating grapheme frequency this is
# probably sufficient since we have many words each with many
# graphemes. We do unfortunately have to assume that case does not matter.
# We do not count dashes, underscores, parentheses, etc. . Just letters.
graph_list = []
for w in unicode_transcription:
for graph in w:
if graph["SYMBOL"] not in "()\/,-_#.":
graph_list.append(graph["SYMBOL"].lower())
graph2int = {v: k for k, v in enumerate(set(graph_list))}
int2graph = {v: k for k, v in graph2int.items()}
graph_list_int = [graph2int[g] for g in graph_list]
bin_edges = list(range(0, len(int2graph.keys()) + 1))
graph_counts = np.histogram(graph_list_int, bins=bin_edges)[0]/ float(len(graph_list_int))
# Set count threshold to frequency that tags the bottom 10% of graphemes
bottom_idx = int(np.floor(tag_percentage * len(graph_counts)))
count_thresh = sorted(graph_counts)[bottom_idx]
graph_counts_dict = {}
for i, count in enumerate(graph_counts):
graph_counts_dict[int2graph[i]] = count
graph_counts = graph_counts_dict
# Print grapheme counts to histogram
if log:
graph_counts_sorted = sorted(graph_counts, reverse=True,
key=graph_counts.get)
if not os.path.exists(log):
os.makedirs(log)
with codecs.open(os.path.join(log, "grapheme_histogram.txt"), "w", "utf-8") as fp:
fp.write("Graphemes (Count Threshold = %.6f) (Tag Percentage "
"= %.2f)\n" % (count_thresh, tag_percentage))
for g in graph_counts_sorted:
weight = ("-" * int(np.ceil(500.0 * graph_counts[g])) +
" %.6f\n" % graph_counts[g])
fp.write("%s -" % (g) + weight)
# Find a new baseform for each word
for w in unicode_transcription:
word_transcription = ""
# Find a "pronunciation" for each grapheme in the word
for graph in w:
# Case 1: Check that the grapheme has a unicode description type
# ---------------------------------------------------------------
if("CHAR_TYPE" not in [k.strip() for k in graph.keys()]):
if(graph["SYMBOL"] == "."):
try:
graph["MAP0"] = "\t"
if word_transcription[-1] == " ":
word_transcription = word_transcription[:-1] + "\t"
except IndexError:
print("Word starting with . detected")
graph["MAP0"] = "."
word_transcription = ". "
elif(graph["SYMBOL"] not in SKIP):
graph["MAP0"] = graph["SYMBOL"].lower()
word_transcription += graph["MAP0"] + " "
# Case 2: Standard Grapheme
# ---------------------------------------------------------------
elif(graph["CHAR_TYPE"].strip() in
("LETTER", "VOWEL", "VOWEL SIGN", "SIGN")):
# Backoff diacritics
base_grapheme = graph["NAME"].strip().replace(" ", "-").lower()
graph["MAP0"] = _backoff_diacritics(graph["SYMBOL"].lower(),
base_grapheme,
graph_counts,
count_thresh)
# Add final space
word_transcription += graph["MAP0"] + " "
# Case 3: Syllable (Assume consonant vowel pattern)
# At some point we will make it (cvc), but for now
# this is basically just here for Amharic
# ----------------------------------------------------------------
elif(graph["CHAR_TYPE"].strip() == "SYLLABLE"):
# Multi-word description
if(len(graph["NAME"].strip().split(' ')) > 1):
g_name = graph["NAME"].strip().replace(" ", "-").lower()
graph["MAP0"] = g_name + "\t"
word_transcription += graph["MAP0"]
# Consonant Vowel Pattern
else:
cv_pattern = (r"(?P<CONSONANT>[^%s]*)(?P<VOWEL>[%s]+)" %
(VOWELS, VOWELS))
parsed_graph = re.match(cv_pattern, graph["NAME"])
if(not parsed_graph):
sys.exit("Syllable did not obey"
"consonant-vowel pattern.")
graph_dict = parsed_graph.groupdict()
# Get consonant if it exists
if("CONSONANT" in graph_dict.keys() and
graph_dict["CONSONANT"]):
graph["MAP0"] = graph_dict["CONSONANT"].lower()
word_transcription += graph["MAP0"] + " "
# Get vowel if it exists
if("VOWEL" in graph_dict.keys() and graph_dict["VOWEL"]):
graph["MAP1"] = graph_dict["VOWEL"].lower() + "\t"
word_transcription += graph["MAP1"]
# Case 4: Commonly occurring symbols
# ----------------------------------------------------------------
elif(graph["CHAR_TYPE"].strip() == "LINK"):
# Add tab for underscores (kaldi lexicon format)
if(graph["SYMBOL"] in ("_", "#")):
graph["MAP0"] = "\t"
if(len(word_transcription) >= 3 and
word_transcription[-2] == "\t"):
word_transcription = word_transcription[:-3] + "\t"
elif(len(word_transcription) >= 1):
word_transcription += "\t"
else:
sys.exit("Unknown rule for initial underscore")
elif(graph["SYMBOL"] == "-"):
graph["MAP0"] = "\t"
else:
sys.exit("Unknown linking symbol found.")
sys.exit(1)
# Update table of observed graphemes
if(graph["SYMBOL"] not in graphemes):
table.append(graph)
graphemes.append(graph["SYMBOL"])
# Append the newly transcribed word
encoded_transcription.append(word_transcription.strip())
# Create grapheme to graphemic-acoustic-unit map
grapheme_map = {}
for g_dict in table:
g_map = ""
map_number = 0
for g_field, g_val in sorted(g_dict.items()):
if(g_field == ("MAP" + str(map_number))):
g_map = g_map + g_val + " "
map_number = map_number + 1
grapheme_map[g_dict["SYMBOL"]] = g_map.strip(' ')
return encoded_transcription, table, grapheme_map
def _backoff_diacritics(grapheme, base_grapheme, graph_counts, count_thresh):
'''
Add diacritics as tags if the grapheme with diacritics occurs
infrequently. The grapheme built by successively peeling away
diacritics until a frequent grapheme in the lexicon is discovered.
This grapheme is then considered a distinct unit and all peeled off
diacritics are added as kaldi style tags
Arguments:
grapheme -- the raw grapheme to be processed
base_grapheme -- the grapheme with no combining marks
(see unicode normalization NFD for more details)
graph_counts -- A dictionary of all seen graphemes as keys with
counts as values
count_thresh -- The frequency threshold below which diacritics
should be peeled away
'''
# Initialize variables before loop
new_grapheme = grapheme
removed = []
parts = unicodedata.normalize("NFD", new_grapheme)
# Find a backed-off (in terms of number of diacritics) grapheme with count
# above the frequency threshold (count_thresh)
while(len(parts) > 1 and
(graph_counts[new_grapheme] <= count_thresh)):
new_grapheme = unicodedata.normalize("NFC", parts[0:-1])
tag = unicodedata.name(parts[-1]).strip().replace(" ", "").lower()
removed.append(tag)
parts = unicodedata.normalize("NFD", new_grapheme)
# Collect all diactritics that will not be added as tags
split_tags = []
for p in parts[1:]:
split_tag = unicodedata.name(p).strip().replace(" ", "").lower()
split_tags.append(split_tag)
# Append non-tag diacritics to the base grapheme
base_grapheme = "".join([base_grapheme] + split_tags)
# Return the tagged grapheme
return "_".join([base_grapheme] + removed)
def apply_map(grapheme_map, baseforms):
'''
Apply the grapheme_map to the baseforms
Arguments:
grapheme_map -- dictionary storing mapping from grapheme to
graphemic-acoustic units
baseforms -- the words to which we want to apply the mappings
Outputs:
encoded_transcription -- See encode (function). It's the exact same
format.
'''
encoded_transcription = []
for w, bf in baseforms:
word_transcription = ""
for graph in bf:
try:
if grapheme_map[graph][-1] == "\t":
word_transcription += grapheme_map[graph]
else:
word_transcription += grapheme_map[graph] + " "
except KeyError:
pass
encoded_transcription.append(word_transcription.strip())
return encoded_transcription
def write_table(table, outfile):
'''
Creates table of graphemes and fields of each grapheme's corresponding
unicode description.
Arguments:
table -- table to write
outfile -- name of the output lexicon debug file
'''
# Create output table name
#outfile = os.path.splitext(outfile)[0]
# Sort keys for convenience
table_sorted = sorted(table, key=lambda k: k["NAME"])
# Start writing to output
with codecs.open(outfile, "w", "utf-8") as fo:
# Get header names
header_names = sorted(set().union(*[d.keys() for d in table]))
# Write headers
for h in header_names[:-1]:
fo.write("%s\t" % h)
fo.write("%s\n" % header_names[-1])
# Write values if present
for t in table_sorted:
for h in header_names[:-1]:
if(h in t.keys() and t[h]):
fo.write("%s\t" % t[h])
else:
fo.write("''\t")
if(header_names[-1] in t.keys() and t[header_names[-1]]):
fo.write("%s\n" % t[header_names[-1]])
else:
fo.write("''\n")
def write_map(grapheme_map, mapfile):
'''
Write out a file with the mapping from graphemes to
graphemic-acoustic units. The format is one grapheme per line
followed by a space and then the graphemic acoustic units to which
the grapheme was mapped. Compatible with utils/apply_map.pl
Arguments:
grapheme_map -- dictionary mapping graphemes to graphemic-acoustic
units as output by encode()
mapfile -- the path to whch the grapheme map will be written
'''
with codecs.open(mapfile, 'w', encoding='utf-8') as f:
for g, g_map in grapheme_map.items():
print(g, g_map, file=f)
def write_lexicon(baseforms, encoded_transcription, outfile, sil_lex=None,
extra_lex=None):
'''
Write out the encoded transcription of words
Arguments:
baseforms -- list of words from a word list
encoded_transcription -- input encoded lexicon
outfile -- output lexicon
'''
# Write Lexicon File
with codecs.open(outfile, "w", "utf-8") as f:
# First write the non-speech words
try:
for w in sil_lex.keys():
f.write("%s\t%s\n" % (w, sil_lex[w]))
except AttributeError:
pass
# Then write extra-speech words
try:
for w in extra_lex.keys():
f.write("%s\t%s\n" % (w, extra_lex[w]))
except AttributeError:
pass
# Then write the rest of the words
for idx, w in enumerate(baseforms):
# This is really just for BABEL in case <hes> is written as a word
if(w[0].lower() == "<hes>"):
f.write("%s\t<hes>\n" % (str(w[0])))
else:
f.write("%s\t%s\n" % (str(w[0]),
encoded_transcription[idx]))
if __name__ == "__main__":
main()