run_cnn_chainali_1a.sh
9.34 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/bin/bash
# chainali_1a is as 1a except it uses chain alignments (using 1a system) instead of gmm alignments
# local/chain/compare_wer.sh exp/chain/cnn_chainali_1a
# System cnn_chainali_1a (dict_50k) cnn_chainali_1a(dict_50k + unk_model)
# WER 15.93 14.09
# CER 7.79 6.70
# WER val 15.10 12.63
# CER val 6.72 5.36
# Final train prob -0.0220
# Final valid prob -0.0157
# Final train prob (xent) -0.4238
# Final valid prob (xent) -0.6119
# Parameters 4.36M
# steps/info/chain_dir_info.pl exp/chain/cnn_chainali_1a
# exp/chain/cnn_chainali_1a: num-iters=42 nj=2..4 num-params=4.4M dim=40->368 combine=-0.020->-0.020 (over 2) xent:train/valid[27,41,final]=(-0.534,-0.425,-0.424/-0.659,-0.612,-0.612) logprob:train/valid[27,41,final]=(-0.026,-0.022,-0.022/-0.017,-0.016,-0.016)
set -e -o pipefail
stage=0
nj=30
train_set=train
decode_val=true
gmm=tri3 # this is the source gmm-dir that we'll use for alignments; it
# should have alignments for the specified training data.
nnet3_affix= # affix for exp dirs, e.g. it was _cleaned in tedlium.
affix=_1a #affix for TDNN+LSTM directory e.g. "1a" or "1b", in case we change the configuration.
ali=tri3_ali
chain_model_dir=exp/chain${nnet3_affix}/cnn_1a
common_egs_dir=
reporting_email=
# chain options
train_stage=-10
xent_regularize=0.1
chunk_width=340,300,200,100
num_leaves=500
tdnn_dim=450
lang_decode=lang_unk
if $decode_val; then maybe_val=val; else maybe_val= ; fi
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
gmm_dir=exp/${gmm}
ali_dir=exp/${ali}
lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_lats_chain
gmm_lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_lats
dir=exp/chain${nnet3_affix}/cnn_chainali${affix}
train_data_dir=data/${train_set}
tree_dir=exp/chain${nnet3_affix}/tree_chain
# the 'lang' directory is created by this script.
# If you create such a directory with a non-standard topology
# you should probably name it differently.
lang=data/lang_chain
for f in $train_data_dir/feats.scp \
$train_data_dir/feats.scp $gmm_dir/final.mdl \
$ali_dir/ali.1.gz $gmm_dir/final.mdl; do
[ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
done
if [ $stage -le 1 ]; then
echo "$0: creating lang directory $lang with chain-type topology"
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
if [ -d $lang ]; then
if [ $lang/L.fst -nt data/lang/L.fst ]; then
echo "$0: $lang already exists, not overwriting it; continuing"
else
echo "$0: $lang already exists and seems to be older than data/lang..."
echo " ... not sure what to do. Exiting."
exit 1;
fi
else
cp -r data/lang $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi
fi
if [ $stage -le 2 ]; then
# Get the alignments as lattices (gives the chain training more freedom).
# use the same num-jobs as the alignments
steps/nnet3/align_lats.sh --nj $nj --cmd "$cmd" \
--acoustic-scale 1.0 \
--scale-opts '--transition-scale=1.0 --self-loop-scale=1.0' \
$train_data_dir data/lang $chain_model_dir $lat_dir
cp $gmm_lat_dir/splice_opts $lat_dir/splice_opts
fi
if [ $stage -le 3 ]; then
# Build a tree using our new topology. We know we have alignments for the
# speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use
# those. The num-leaves is always somewhat less than the num-leaves from
# the GMM baseline.
if [ -f $tree_dir/final.mdl ]; then
echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it."
exit 1;
fi
steps/nnet3/chain/build_tree.sh \
--frame-subsampling-factor 4 \
--context-opts "--context-width=2 --central-position=1" \
--cmd "$cmd" $num_leaves $train_data_dir \
$lang $ali_dir $tree_dir
fi
if [ $stage -le 4 ]; then
mkdir -p $dir
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(tree-info $tree_dir/tree | grep num-pdfs | awk '{print $2}')
learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
common1="height-offsets=-2,-1,0,1,2 num-filters-out=36"
common2="height-offsets=-2,-1,0,1,2 num-filters-out=70"
common3="height-offsets=-1,0,1 num-filters-out=70"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=40 name=input
conv-relu-batchnorm-layer name=cnn1 height-in=40 height-out=40 time-offsets=-3,-2,-1,0,1,2,3 $common1
conv-relu-batchnorm-layer name=cnn2 height-in=40 height-out=20 time-offsets=-2,-1,0,1,2 $common1 height-subsample-out=2
conv-relu-batchnorm-layer name=cnn3 height-in=20 height-out=20 time-offsets=-4,-2,0,2,4 $common2
conv-relu-batchnorm-layer name=cnn4 height-in=20 height-out=10 time-offsets=-4,-2,0,2,4 $common2 height-subsample-out=2
relu-batchnorm-layer name=tdnn1 input=Append(-4,-2,0,2,4) dim=$tdnn_dim
relu-batchnorm-layer name=tdnn2 input=Append(-4,0,4) dim=$tdnn_dim
relu-batchnorm-layer name=tdnn3 input=Append(-4,0,4) dim=$tdnn_dim
relu-batchnorm-layer name=tdnn4 input=Append(-4,0,4) dim=$tdnn_dim
## adding the layers for chain branch
relu-batchnorm-layer name=prefinal-chain dim=$tdnn_dim target-rms=0.5
output-layer name=output include-log-softmax=false dim=$num_targets max-change=1.5
# adding the layers for xent branch
# This block prints the configs for a separate output that will be
# trained with a cross-entropy objective in the 'chain' mod?els... this
# has the effect of regularizing the hidden parts of the model. we use
# 0.5 / args.xent_regularize as the learning rate factor- the factor of
# 0.5 / args.xent_regularize is suitable as it means the xent
# final-layer learns at a rate independent of the regularization
# constant; and the 0.5 was tuned so as to make the relative progress
# similar in the xent and regular final layers.
relu-batchnorm-layer name=prefinal-xent input=tdnn4 dim=$tdnn_dim target-rms=0.5
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 5 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{3,4,5,6}/$USER/kaldi-data/egs/iam-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
fi
steps/nnet3/chain/train.py --stage=$train_stage \
--cmd="$cmd" \
--feat.cmvn-opts="--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient=0.1 \
--chain.l2-regularize=0.00005 \
--chain.apply-deriv-weights=false \
--chain.lm-opts="--num-extra-lm-states=500" \
--chain.frame-subsampling-factor=4 \
--chain.alignment-subsampling-factor=1 \
--trainer.srand=0 \
--trainer.max-param-change=2.0 \
--trainer.num-epochs=4 \
--trainer.frames-per-iter=1000000 \
--trainer.optimization.num-jobs-initial=2 \
--trainer.optimization.num-jobs-final=4 \
--trainer.optimization.initial-effective-lrate=0.001 \
--trainer.optimization.final-effective-lrate=0.0001 \
--trainer.optimization.shrink-value=1.0 \
--trainer.num-chunk-per-minibatch=64,32 \
--egs.chunk-width=$chunk_width \
--egs.dir="$common_egs_dir" \
--egs.opts="--frames-overlap-per-eg 0" \
--cleanup.remove-egs=false \
--use-gpu=true \
--reporting.email="$reporting_email" \
--feat-dir=$train_data_dir \
--tree-dir=$tree_dir \
--lat-dir=$lat_dir \
--dir=$dir || exit 1;
fi
if [ $stage -le 6 ]; then
# The reason we are using data/lang here, instead of $lang, is just to
# emphasize that it's not actually important to give mkgraph.sh the
# lang directory with the matched topology (since it gets the
# topology file from the model). So you could give it a different
# lang directory, one that contained a wordlist and LM of your choice,
# as long as phones.txt was compatible.
utils/mkgraph.sh \
--self-loop-scale 1.0 data/$lang_decode \
$dir $dir/graph || exit 1;
fi
if [ $stage -le 7 ]; then
frames_per_chunk=$(echo $chunk_width | cut -d, -f1)
for decode_set in test $maybe_val; do
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--frames-per-chunk $frames_per_chunk \
--nj $nj --cmd "$cmd" \
$dir/graph data/$decode_set $dir/decode_$decode_set || exit 1;
done
fi
echo "$0 Done. Date: $(date). Results:"
local/chain/compare_wer.sh $dir