run_tdnn_lstm_1a.sh
9.14 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/bin/bash
# this is the tdnn-lstmp based on the run_tdnn_lstm_1n.sh under Switchboard.
# training acoustic model and decoding:
# local/chain/tuning/run_tdnn_lstm_1a.sh
# System tdnn_lstm1a_sp
# WER on dev(fglarge) 3.44
# WER on dev(tglarge) 3.55
# WER on dev_other(fglarge) 8.63
# WER on dev_other(tglarge) 9.09
# WER on test(fglarge) 3.78
# WER on test(tglarge) 3.94
# WER on test_other(fglarge) 8.83
# WER on test_other(tglarge) 9.09
# Final train prob -0.0452
# Final valid prob -0.0477
# Final train prob (xent) -0.7874
# Final valid prob (xent) -0.8150
# Num-parameters 27790288
# exp/chain_cleaned/tdnn_lstm1a_sp/: num-iters=1303 nj=3..16 num-params=27.8M dim=40+100->6056 combine=-0.041->-0.040 (over 9) xent:train/valid[867,1302,final]=(-1.15,-0.782,-0.787/-1.18,-0.810,-0.815) logprob:train/valid[867,1302,final]=(-0.063,-0.047,-0.045/-0.062,-0.049,-0.048)
set -e
# configs for 'chain'
stage=12
train_stage=-10
get_egs_stage=-10
speed_perturb=true
affix=1a
decode_iter=
decode_nj=50
# LSTM training options
frames_per_chunk=140,100,160
frames_per_chunk_primary=$(echo $frames_per_chunk | cut -d, -f1)
chunk_left_context=40
chunk_right_context=0
xent_regularize=0.025
self_repair_scale=0.00001
label_delay=5
# decode options
extra_left_context=50
extra_right_context=0
dropout_schedule='0,0@0.20,0.3@0.50,0'
remove_egs=false
common_egs_dir=
nnet3_affix=_cleaned
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet3 setup, and you can skip them by setting "--stage 8" if you have already
# run those things.
suffix=
if [ "$speed_perturb" == "true" ]; then
suffix=_sp
fi
gmm=tri6b_cleaned
dir=exp/chain${nnet3_affix}/tdnn_lstm${affix}${suffix}
train_set=train_960_cleaned
ali_dir=exp/${gmm}_ali_${train_set}_sp_comb
tree_dir=exp/chain${nnet3_affix}/tree_sp${tree_affix:+_$tree_affix}
lang=data/lang_chain
train_data_dir=data/${train_set}_sp_hires_comb
lores_train_data_dir=data/${train_set}_sp_comb
train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb
lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_comb_lats
if [ $stage -le 12 ]; then
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}')
learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
opts="l2-regularize=0.002"
linear_opts="orthonormal-constraint=1.0"
lstm_opts="l2-regularize=0.0005 decay-time=40"
output_opts="l2-regularize=0.0005 output-delay=$label_delay max-change=1.5 dim=$num_targets"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input
fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
# the first splicing is moved before the lda layer, so no splicing here
relu-batchnorm-layer name=tdnn1 $opts dim=1280
linear-component name=tdnn2l dim=256 $linear_opts input=Append(-1,0)
relu-batchnorm-layer name=tdnn2 $opts input=Append(0,1) dim=1280
linear-component name=tdnn3l dim=256 $linear_opts
relu-batchnorm-layer name=tdnn3 $opts dim=1280
linear-component name=tdnn4l dim=256 $linear_opts input=Append(-1,0)
relu-batchnorm-layer name=tdnn4 $opts input=Append(0,1) dim=1280
linear-component name=tdnn5l dim=256 $linear_opts
relu-batchnorm-layer name=tdnn5 $opts dim=1280 input=Append(tdnn5l, tdnn3l)
linear-component name=tdnn6l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-layer name=tdnn6 $opts input=Append(0,3) dim=1280
linear-component name=lstm1l dim=256 $linear_opts input=Append(-3,0)
fast-lstmp-layer name=lstm1 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=128 delay=-3 dropout-proportion=0.0 $lstm_opts
relu-batchnorm-layer name=tdnn7 $opts input=Append(0,3,tdnn6l,tdnn4l,tdnn2l) dim=1280
linear-component name=tdnn8l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-layer name=tdnn8 $opts input=Append(0,3) dim=1280
linear-component name=lstm2l dim=256 $linear_opts input=Append(-3,0)
fast-lstmp-layer name=lstm2 cell-dim=1280 recurrent-projection-dim=256 non-recurrent-projection-dim=128 delay=-3 dropout-proportion=0.0 $lstm_opts
relu-batchnorm-layer name=tdnn9 $opts input=Append(0,3,tdnn8l,tdnn6l,tdnn4l) dim=1280
linear-component name=tdnn10l dim=256 $linear_opts input=Append(-3,0)
relu-batchnorm-layer name=tdnn10 $opts input=Append(0,3) dim=1280
linear-component name=lstm3l dim=256 $linear_opts input=Append(-3,0)
fast-lstmp-layer name=lstm3 cell-dim=1280 recurrent-projection-dim=256 non-recurrent-projection-dim=128 delay=-3 dropout-proportion=0.0 $lstm_opts
output-layer name=output input=lstm3 include-log-softmax=false $output_opts
output-layer name=output-xent input=lstm3 learning-rate-factor=$learning_rate_factor $output_opts
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 13 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/c0{1,2,5,7}/$USER/kaldi-data/egs/swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
fi
steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir $train_ivector_dir \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.0 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--trainer.dropout-schedule $dropout_schedule \
--trainer.num-chunk-per-minibatch 64,32 \
--trainer.frames-per-iter 1500000 \
--trainer.max-param-change 2.0 \
--trainer.num-epochs 6 \
--trainer.optimization.num-jobs-initial 3 \
--trainer.optimization.num-jobs-final 16 \
--trainer.optimization.initial-effective-lrate 0.001 \
--trainer.optimization.final-effective-lrate 0.0001 \
--trainer.optimization.momentum 0.0 \
--trainer.deriv-truncate-margin 8 \
--egs.stage $get_egs_stage \
--egs.opts "--frames-overlap-per-eg 0" \
--egs.chunk-width $frames_per_chunk \
--egs.chunk-left-context $chunk_left_context \
--egs.chunk-right-context $chunk_right_context \
--egs.chunk-left-context-initial 0 \
--egs.chunk-right-context-final 0 \
--egs.dir "$common_egs_dir" \
--cleanup.remove-egs $remove_egs \
--feat-dir $train_data_dir \
--tree-dir $tree_dir \
--lat-dir $lat_dir \
--dir $dir || exit 1;
fi
graph_dir=$dir/graph_tgsmall
if [ $stage -le 14 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 --remove-oov data/lang_test_tgsmall $dir $graph_dir
# remove <UNK> from the graph, and convert back to const-FST.
fstrmsymbols --apply-to-output=true --remove-arcs=true "echo 3|" $graph_dir/HCLG.fst - | \
fstconvert --fst_type=const > $graph_dir/temp.fst
mv $graph_dir/temp.fst $graph_dir/HCLG.fst
fi
iter_opts=
if [ ! -z $decode_iter ]; then
iter_opts=" --iter $decode_iter "
fi
if [ $stage -le 15 ]; then
rm $dir/.error 2>/dev/null || true
for decode_set in test_clean test_other dev_clean dev_other; do
(
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--nj $decode_nj --cmd "$decode_cmd" $iter_opts \
--extra-left-context $extra_left_context \
--extra-right-context $extra_right_context \
--extra-left-context-initial 0 \
--extra-right-context-final 0 \
--frames-per-chunk "$frames_per_chunk_primary" \
--online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${decode_set}_hires \
$graph_dir data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_tgsmall || exit 1
steps/lmrescore.sh --cmd "$decode_cmd" --self-loop-scale 1.0 data/lang_test_{tgsmall,tgmed} \
data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,tgmed} || exit 1
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,tglarge} \
data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,tglarge} || exit 1
steps/lmrescore_const_arpa.sh \
--cmd "$decode_cmd" data/lang_test_{tgsmall,fglarge} \
data/${decode_set}_hires $dir/decode_${decode_set}${decode_iter:+_$decode_iter}_{tgsmall,fglarge} || exit 1
) || touch $dir/.error &
done
wait
if [ -f $dir/.error ]; then
echo "$0: something went wrong in decoding"
exit 1
fi
fi