train_multisplice_accel2.sh 29.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
#!/bin/bash

# Copyright 2012-2014  Johns Hopkins University (Author: Daniel Povey).
#           2013  Xiaohui Zhang
#           2013  Guoguo Chen
#           2014  Vimal Manohar
#           2014  Vijayaditya Peddinti
# Apache 2.0.

# This is a modified version of train_multisplice_accel2.sh in
# steps/nnet2/ for language recognition. The main difference is
# that it uses different get_lda.sh and get_egs2.sh scripts.
#
# The original train_multisplice_accel2.sh was a modified version of
# train_pnorm_multisplice2.sh (still using pnorm).  The "accel" refers to the
# fact that we increase the number of jobs during training (from
# --num-jobs-initial to --num-jobs-final).  We dropped "pnorm" from the name as
# it was getting too long.


# Begin configuration section.
cmd=run.pl
num_epochs=15      # Number of epochs of training;
                   # the number of iterations is worked out from this.
initial_effective_lrate=0.01
final_effective_lrate=0.001
bias_stddev=0.5
pnorm_input_dim=3000
pnorm_output_dim=300
minibatch_size=128 # by default use a smallish minibatch size for neural net
                   # training; this controls instability which would otherwise
                   # be a problem with multi-threaded update.

samples_per_iter=400000 # each iteration of training, see this many samples
                        # per job.  This option is passed to get_egs.sh
num_jobs_initial=1  # Number of neural net jobs to run in parallel at the start of training
num_jobs_final=8   # Number of neural net jobs to run in parallel at the end of training
prior_subset_size=10000 # 10k samples per job, for computing priors.  Should be
                        # more than enough.
num_jobs_compute_prior=10 # these are single-threaded, run on CPU.
get_egs_stage=0
online_ivector_dir=
remove_egs=true  # set to false to disable removing egs.

max_models_combine=20 # The "max_models_combine" is the maximum number of models we give
  # to the final 'combine' stage, but these models will themselves be averages of
  # iteration-number ranges.

shuffle_buffer_size=5000 # This "buffer_size" variable controls randomization of the samples
                # on each iter.  You could set it to 0 or to a large value for complete
                # randomization, but this would both consume memory and cause spikes in
                # disk I/O.  Smaller is easier on disk and memory but less random.  It's
                # not a huge deal though, as samples are anyway randomized right at the start.
                # (the point of this is to get data in different minibatches on different iterations,
                # since in the preconditioning method, 2 samples in the same minibatch can
                # affect each others' gradients.

add_layers_period=2 # by default, add new layers every 2 iterations.
num_hidden_layers=3
stage=-4
exit_stage=-100 # you can set this to terminate the training early.  Exits before running this stage

splice_indexes="layer0/-4:-3:-2:-1:0:1:2:3:4 layer2/-5:-1:3"
# Format : layer<hidden_layer>/<frame_indices>....layer<hidden_layer>/<frame_indices> "
# note: hidden layers which are composed of one or more components,
# so hidden layer indexing is different from component count


io_opts="--max-jobs-run 5" # for jobs with a lot of I/O, limits the number running at one time.   These don't
randprune=4.0 # speeds up LDA.
alpha=4.0 # relates to preconditioning.
update_period=4 # relates to online preconditioning: says how often we update the subspace.
num_samples_history=2000 # relates to online preconditioning
max_change_per_sample=0.075
precondition_rank_in=20  # relates to online preconditioning
precondition_rank_out=80 # relates to online preconditioning

mix_up=0 # Number of components to mix up to (should be > #tree leaves, if
        # specified.)
num_threads=16
parallel_opts="--num-threads 16 --mem 1G"
  # by default we use 16 threads; this lets the queue know.
  # note: parallel_opts doesn't automatically get adjusted if you adjust num-threads.
combine_num_threads=8
combine_parallel_opts="--num-threads 8"  # queue options for the "combine" stage.
cleanup=true
egs_dir=
lda_opts=
lda_dim=
egs_opts=
transform_dir=     # If supplied, overrides alidir
feat_type=  # Can be used to force "raw" features.
align_cmd=              # The cmd that is passed to steps/nnet2/align.sh
align_use_gpu=          # Passed to use_gpu in steps/nnet2/align.sh [yes/no]
realign_times=          # List of times on which we realign.  Each time is
                        # floating point number strictly between 0 and 1, which
                        # will be multiplied by the num-iters to get an iteration
                        # number.
num_jobs_align=30       # Number of jobs for realignment
# End configuration section.
frames_per_eg=8 # to be passed on to get_egs2.sh

trap 'for pid in $(jobs -pr); do kill -KILL $pid; done' INT QUIT TERM

echo "$0 $@"  # Print the command line for logging

if [ -f path.sh ]; then . ./path.sh; fi
. parse_options.sh || exit 1;

if [ $# != 4 ]; then
  echo "Usage: $0 [opts] <data> <lang> <ali-dir> <exp-dir>"
  echo " e.g.: $0 data/train data/lang exp/tri3_ali exp/tri4_nnet"
  echo ""
  echo "Main options (for others, see top of script file)"
  echo "  --config <config-file>                           # config file containing options"
  echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
  echo "  --num-epochs <#epochs|15>                        # Number of epochs of training"
  echo "  --initial-effective-lrate <lrate|0.02> # effective learning rate at start of training."
  echo "  --final-effective-lrate <lrate|0.004>   # effective learning rate at end of training."
  echo "                                                   # data, 0.00025 for large data"
  echo "  --num-hidden-layers <#hidden-layers|2>           # Number of hidden layers, e.g. 2 for 3 hours of data, 4 for 100hrs"
  echo "  --add-layers-period <#iters|2>                   # Number of iterations between adding hidden layers"
  echo "  --mix-up <#pseudo-gaussians|0>                   # Can be used to have multiple targets in final output layer,"
  echo "                                                   # per context-dependent state.  Try a number several times #states."
  echo "  --num-jobs-initial <num-jobs|1>                  # Number of parallel jobs to use for neural net training, at the start."
  echo "  --num-jobs-final <num-jobs|8>                    # Number of parallel jobs to use for neural net training, at the end"
  echo "  --num-threads <num-threads|16>                   # Number of parallel threads per job (will affect results"
  echo "                                                   # as well as speed; may interact with batch size; if you increase"
  echo "                                                   # this, you may want to decrease the batch size."
  echo "  --parallel-opts <opts|\"--num-threads 16 --mem 1G\">      # extra options to pass to e.g. queue.pl for processes that"
  echo "                                                   # use multiple threads... note, you might have to reduce --mem"
  echo "                                                   # versus your defaults, because it gets multiplied by the --num-threads argument."
  echo "  --io-opts <opts|\"--max-jobs-run 10\">                      # Options given to e.g. queue.pl for jobs that do a lot of I/O."
  echo "  --minibatch-size <minibatch-size|128>            # Size of minibatch to process (note: product with --num-threads"
  echo "                                                   # should not get too large, e.g. >2k)."
  echo "  --samples-per-iter <#samples|400000>             # Number of samples of data to process per iteration, per"
  echo "                                                   # process."
  echo "  --splice-indexes <string|layer0/-4:-3:-2:-1:0:1:2:3:4> "
  echo "                                                   # Frame indices used for each splice layer."
  echo "                                                   # Format : layer<hidden_layer_index>/<frame_indices>....layer<hidden_layer>/<frame_indices> "
  echo "                                                   # (note: we splice processed, typically 40-dimensional frames"
  echo "  --lda-dim <dim|''>                               # Dimension to reduce spliced features to with LDA"
  echo "  --realign-epochs <list-of-epochs|''>             # A list of space-separated epoch indices the beginning of which"
  echo "                                                   # realignment is to be done"
  echo "  --align-cmd (utils/run.pl|utils/queue.pl <queue opts>) # passed to align.sh"
  echo "  --align-use-gpu (yes/no)                         # specify is gpu is to be used for realignment"
  echo "  --num-jobs-align <#njobs|30>                     # Number of jobs to perform realignment"
  echo "  --stage <stage|-4>                               # Used to run a partially-completed training process from somewhere in"
  echo "                                                   # the middle."


  exit 1;
fi

data=$1
lang=$2
alidir=$3
dir=$4

if [ ! -z "$realign_times" ]; then
  [ -z "$align_cmd" ] && echo "$0: realign_times specified but align_cmd not specified" && exit 1
  [ -z "$align_use_gpu" ] && echo "$0: realign_times specified but align_use_gpu not specified" && exit 1
fi

# Check some files.
for f in $data/feats.scp $lang/L.fst $alidir/ali.1.gz $alidir/final.mdl $alidir/tree; do
  [ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done


# Set some variables.
num_leaves=`tree-info $alidir/tree 2>/dev/null | grep num-pdfs | awk '{print $2}'` || exit 1
[ -z $num_leaves ] && echo "\$num_leaves is unset" && exit 1
[ "$num_leaves" -eq "0" ] && echo "\$num_leaves is 0" && exit 1

nj=`cat $alidir/num_jobs` || exit 1;  # number of jobs in alignment dir...
# in this dir we'll have just one job.
sdata=$data/split$nj
utils/split_data.sh $data $nj

mkdir -p $dir/log
echo $nj > $dir/num_jobs
cp $alidir/tree $dir

# process the splice_inds string, to get a layer-wise context string
# to be processed by the nnet-components
# this would be mainly used by SpliceComponent|SpliceMaxComponent
python steps/nnet2/make_multisplice_configs.py contexts --splice-indexes "$splice_indexes" $dir || exit -1;
context_string=$(cat $dir/vars) || exit -1
echo $context_string
eval $context_string || exit -1; #
  # initializes variables used by get_lda.sh and get_egs.sh
  # get_lda.sh : first_left_context, first_right_context,
  # get_egs.sh : nnet_left_context & nnet_right_context

extra_opts=()
[ ! -z "$feat_type" ] && extra_opts+=(--feat-type $feat_type)
[ ! -z "$online_ivector_dir" ] && extra_opts+=(--online-ivector-dir $online_ivector_dir)
[ -z "$transform_dir" ] && transform_dir=$alidir
extra_opts+=(--transform-dir $transform_dir)

if [ $stage -le -4 ]; then
  echo "$0: calling get_lda.sh"
  lid/nnet2/get_lda.sh $lda_opts "${extra_opts[@]}" --left-context $first_left_context --right-context $first_right_context --cmd "$cmd" $data $lang $alidir $dir || exit 1;
fi
# these files will have been written by get_lda.sh
feat_dim=$(cat $dir/feat_dim) || exit 1;
ivector_dim=$(cat $dir/ivector_dim) || exit 1;
lda_dim=$(cat $dir/lda_dim) || exit 1;

if [ $stage -le -3 ] && [ -z "$egs_dir" ]; then

  extra_opts+=(--left-context $nnet_left_context )
  extra_opts+=(--right-context $nnet_right_context )
  echo "$0: calling get_egs2.sh"
  lid/nnet2/get_egs2.sh $egs_opts "${extra_opts[@]}" \
      --samples-per-iter $samples_per_iter --stage $get_egs_stage \
      --io-opts "$io_opts" \
      --cmd "$cmd" $egs_opts \
      --frames-per-eg $frames_per_eg \
      $data $alidir $dir/egs || exit 1;
fi

if [ -z $egs_dir ]; then
  egs_dir=$dir/egs
  # confirm that the provided egs_dir has the necessary context
  egs_left_context=$(cat $egs_dir/info/left_context) || exit -1
  egs_right_context=$(cat $egs_dir/info/right_context) || exit -1
  echo $egs_left_context  $nnet_left_context $egs_right_context $nnet_right_context
  ([[ $egs_left_context -lt $nnet_left_context ]] || [[ $egs_right_context -lt $nnet_right_context ]]) &&
    echo "Provided egs_dir $egs_dir does not have sufficient context to train the neural network." && exit -1;
fi

frames_per_eg=$(cat $egs_dir/info/frames_per_eg) || { echo "error: no such file $egs_dir/info/frames_per_eg"; exit 1; }
num_archives=$(cat $egs_dir/info/num_archives) || { echo "error: no such file $egs_dir/info/frames_per_eg"; exit 1; }

# num_archives_expanded considers each separate label-position from
# 0..frames_per_eg-1 to be a separate archive.
num_archives_expanded=$[$num_archives*$frames_per_eg]

[ $num_jobs_initial -gt $num_jobs_final ] && \
  echo "$0: --initial-num-jobs cannot exceed --final-num-jobs" && exit 1;

[ $num_jobs_final -gt $num_archives_expanded ] && \
  echo "$0: --final-num-jobs cannot exceed #archives $num_archives_expanded." && exit 1;

if ! [ $num_hidden_layers -ge 1 ]; then
  echo "Invalid num-hidden-layers $num_hidden_layers"
  exit 1
fi

if [ $stage -le -2 ]; then
  echo "$0: initializing neural net";
  lda_mat=$dir/lda.mat
  tot_input_dim=$[$feat_dim+$ivector_dim]

  online_preconditioning_opts="alpha=$alpha num-samples-history=$num_samples_history update-period=$update_period rank-in=$precondition_rank_in rank-out=$precondition_rank_out max-change-per-sample=$max_change_per_sample"

  initial_lrate=$(perl -e "print ($initial_effective_lrate*$num_jobs_initial);")

  # create the config files for nnet initialization
  python steps/nnet2/make_multisplice_configs.py  \
    --splice-indexes "$splice_indexes"  \
    --total-input-dim $tot_input_dim  \
    --ivector-dim $ivector_dim  \
    --lda-mat "$lda_mat"  \
    --lda-dim $lda_dim  \
    --pnorm-input-dim $pnorm_input_dim  \
    --pnorm-output-dim  $pnorm_output_dim \
    --online-preconditioning-opts "$online_preconditioning_opts"  \
    --initial-learning-rate $initial_lrate \
    --bias-stddev  $bias_stddev  \
    --num-hidden-layers $num_hidden_layers \
    --num-targets  $num_leaves  \
    configs  $dir || exit -1;

  $cmd $dir/log/nnet_init.log \
    nnet-am-init $alidir/tree $lang/topo "nnet-init $dir/nnet.config -|" \
    $dir/0.mdl || exit 1;
fi

if [ $stage -le -1 ]; then
  echo "Training transition probabilities and setting priors"
  $cmd $dir/log/train_trans.log \
    nnet-train-transitions $dir/0.mdl "ark:gunzip -c $alidir/ali.*.gz|" $dir/0.mdl \
    || exit 1;
fi

# set num_iters so that as close as possible, we process the data $num_epochs
# times, i.e. $num_iters*$avg_num_jobs) == $num_epochs*$num_archives_expanded,
# where avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.

num_archives_to_process=$[$num_epochs*$num_archives_expanded]
num_archives_processed=0
num_iters=$[($num_archives_to_process*2)/($num_jobs_initial+$num_jobs_final)]

! [ $num_iters -gt $[$finish_add_layers_iter+2] ] \
  && echo "$0: Insufficient epochs" && exit 1

finish_add_layers_iter=$[$num_hidden_layers * $add_layers_period]


# mix up at the iteration where we've processed about half the data; this keeps
# the overall training procedure fairly invariant to the number of initial and
# final jobs.
# j = initial, k = final, n = num-iters, x = half-of-data epoch,
# p is proportion of data we want to process (e.g. p=0.5 here).
# solve for x if the amount of data processed by epoch x is p
# times the amount by iteration n.
# put this in wolfram alpha:
# solve { x*j + (k-j)*x*x/(2*n) = p * (j*n + (k-j)*n/2), {x} }
# got: x = (j n-sqrt(-n^2 (j^2 (p-1)-k^2 p)))/(j-k) and j!=k and n!=0
# simplified manually to: n * (sqrt(((1-p)j^2 + p k^2)/2) - j)/(j-k)
mix_up_iter=$(perl -e '($j,$k,$n,$p)=@ARGV; print int(0.5 + ($j==$k ? $n*$p : $n*(sqrt((1-$p)*$j*$j+$p*$k*$k)-$j)/($k-$j))); ' $num_jobs_initial $num_jobs_final $num_iters 0.5)
! [ $mix_up_iter -gt $finish_add_layers_iter ] && \
  echo "Mix-up-iter is $mix_up_iter, should be greater than $finish_add_layers_iter -> add more epochs?" \
  && exit 1;

echo "$0: Will train for $num_epochs epochs = $num_iters iterations"
[ $mix_up -gt 0 ] && echo "$0: Will mix up on iteration $mix_up_iter"

if [ $num_threads -eq 1 ]; then
  parallel_suffix="-simple" # this enables us to use GPU code if
                         # we have just one thread.
  parallel_train_opts=
  if ! cuda-compiled; then
    echo "$0: WARNING: you are running with one thread but you have not compiled"
    echo "   for CUDA.  You may be running a setup optimized for GPUs.  If you have"
    echo "   GPUs and have nvcc installed, go to src/ and do ./configure; make"
  fi
else
  parallel_suffix="-parallel"
  parallel_train_opts="--num-threads=$num_threads"
fi


approx_iters_per_epoch_final=$[$num_archives_expanded/$num_jobs_final]
# First work out how many models we want to combine over in the final
# nnet-combine-fast invocation.  This equals
# min(max(max_models_combine, approx_iters_per_epoch_final),
#     2/3 * iters_after_mixup)
num_models_combine=$max_models_combine
if [ $num_models_combine -lt $approx_iters_per_epoch_final ]; then
   num_models_combine=$approx_iters_per_epoch_final
fi
iters_after_mixup_23=$[(($num_iters-$mix_up_iter-1)*2)/3]
if [ $num_models_combine -gt $iters_after_mixup_23 ]; then
  num_models_combine=$iters_after_mixup_23
fi
first_model_combine=$[$num_iters-$num_models_combine+1]

x=0


for realign_time in $realign_times; do
  # Work out the iterations on which we will re-align, if the --realign-times
  # option was used.  This is slightly approximate.
  ! perl -e "exit($realign_time > 0.0 && $realign_time < 1.0 ? 0:1);" && \
    echo "Invalid --realign-times option $realign_times: elements must be strictly between 0 and 1.";
  # the next formula is based on the one for mix_up_iter above.
  realign_iter=$(perl -e '($j,$k,$n,$p)=@ARGV; print int(0.5 + ($j==$k ? $n*$p : $n*(sqrt((1-$p)*$j*$j+$p*$k*$k)-$j)/($k-$j))); ' $num_jobs_initial $num_jobs_final $num_iters $realign_time) || exit 1;
  realign_this_iter[$realign_iter]=$realign_time
done

cur_egs_dir=$egs_dir

while [ $x -lt $num_iters ]; do
  [ $x -eq $exit_stage ] && echo "$0: Exiting early due to --exit-stage $exit_stage" && exit 0;

  this_num_jobs=$(perl -e "print int(0.5+$num_jobs_initial+($num_jobs_final-$num_jobs_initial)*$x/$num_iters);")

  ilr=$initial_effective_lrate; flr=$final_effective_lrate; np=$num_archives_processed; nt=$num_archives_to_process;
  this_learning_rate=$(perl -e "print (($x + 1 >= $num_iters ? $flr : $ilr*exp($np*log($flr/$ilr)/$nt))*$this_num_jobs);");

  echo "On iteration $x, learning rate is $this_learning_rate."

  if [ ! -z "${realign_this_iter[$x]}" ]; then
    prev_egs_dir=$cur_egs_dir
    cur_egs_dir=$dir/egs_${realign_this_iter[$x]}
  fi

  if [ $x -ge 0 ] && [ $stage -le $x ]; then
    if [ ! -z "${realign_this_iter[$x]}" ]; then
      time=${realign_this_iter[$x]}

      echo "Getting average posterior for purposes of adjusting the priors."
      # Note: this just uses CPUs, using a smallish subset of data.
      # always use the first egs archive, which makes the script simpler;
      # we're using different random subsets of it.
      rm $dir/post.$x.*.vec 2>/dev/null
      $cmd JOB=1:$num_jobs_compute_prior $dir/log/get_post.$x.JOB.log \
        nnet-copy-egs --srand=JOB --frame=random ark:$prev_egs_dir/egs.1.ark ark:- \| \
        nnet-subset-egs --srand=JOB --n=$prior_subset_size ark:- ark:- \| \
        nnet-compute-from-egs "nnet-to-raw-nnet $dir/$x.mdl -|" ark:- ark:- \| \
        matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/post.$x.JOB.vec || exit 1;

      sleep 3;  # make sure there is time for $dir/post.$x.*.vec to appear.

      $cmd $dir/log/vector_sum.$x.log \
        vector-sum $dir/post.$x.*.vec $dir/post.$x.vec || exit 1;
      rm $dir/post.$x.*.vec;

      echo "Re-adjusting priors based on computed posteriors"
      $cmd $dir/log/adjust_priors.$x.log \
        nnet-adjust-priors $dir/$x.mdl $dir/post.$x.vec $dir/$x.mdl || exit 1;

      sleep 2

      steps/nnet2/align.sh --nj $num_jobs_align --cmd "$align_cmd" --use-gpu $align_use_gpu \
        --transform-dir "$transform_dir" --online-ivector-dir "$online_ivector_dir" \
        --iter $x $data $lang $dir $dir/ali_$time || exit 1

      lid/nnet2/relabel_egs2.sh --cmd "$cmd" --iter $x $dir/ali_$time \
        $prev_egs_dir $cur_egs_dir || exit 1

      if $cleanup && [[ $prev_egs_dir =~ $dir/egs* ]]; then
        steps/nnet2/remove_egs.sh $prev_egs_dir
      fi
    fi

    # Set off jobs doing some diagnostics, in the background.
    # Use the egs dir from the previous iteration for the diagnostics
    $cmd $dir/log/compute_prob_valid.$x.log \
      nnet-compute-prob $dir/$x.mdl ark:$cur_egs_dir/valid_diagnostic.egs &
    $cmd $dir/log/compute_prob_train.$x.log \
      nnet-compute-prob $dir/$x.mdl ark:$cur_egs_dir/train_diagnostic.egs &
    if [ $x -gt 0 ] && [ ! -f $dir/log/mix_up.$[$x-1].log ]; then
      $cmd $dir/log/progress.$x.log \
        nnet-show-progress --use-gpu=no $dir/$[$x-1].mdl $dir/$x.mdl \
        ark:$cur_egs_dir/train_diagnostic.egs '&&' \
        nnet-am-info $dir/$x.mdl &
    fi

    echo "Training neural net (pass $x)"

    if [ $x -gt 0 ] && \
      [ $x -le $[($num_hidden_layers-1)*$add_layers_period] ] && \
      [ $[$x%$add_layers_period] -eq 0 ]; then
      do_average=false # if we've just mixed up, don't do averaging take the best.
      cur_num_hidden_layers=$[$x/$add_layers_period];
      mdl="nnet-init --srand=$x $dir/hidden_${cur_num_hidden_layers}.config - | nnet-insert $dir/$x.mdl - - | nnet-am-copy --learning-rate=$this_learning_rate - -|"
    else
      do_average=true
      if [ $x -eq 0 ]; then do_average=false; fi # on iteration 0, pick the best, don't average.
      mdl="nnet-am-copy --learning-rate=$this_learning_rate $dir/$x.mdl -|"
    fi
    if $do_average; then
      this_minibatch_size=$minibatch_size
    else
      # on iteration zero or when we just added a layer, use a smaller minibatch
      # size and just one job: the model-averaging doesn't seem to be helpful
      # when the model is changing too fast (i.e. it worsens the objective
      # function), and the smaller minibatch size will help to keep
      # the update stable.
      this_minibatch_size=$[$minibatch_size/2];
    fi

    rm $dir/.error 2>/dev/null


    ( # this sub-shell is so that when we "wait" below,
      # we only wait for the training jobs that we just spawned,
      # not the diagnostic jobs that we spawned above.

      # We can't easily use a single parallel SGE job to do the main training,
      # because the computation of which archive and which --frame option
      # to use for each job is a little complex, so we spawn each one separately.
      for n in $(seq $this_num_jobs); do
        k=$[$num_archives_processed + $n - 1]; # k is a zero-based index that we'll derive
                                               # the other indexes from.
        archive=$[($k%$num_archives)+1]; # work out the 1-based archive index.
        frame=$[(($k/$num_archives)%$frames_per_eg)]; # work out the 0-based frame
        # index; this increases more slowly than the archive index because the
        # same archive with different frame indexes will give similar gradients,
        # so we want to separate them in time.

        $cmd $parallel_opts $dir/log/train.$x.$n.log \
          nnet-train$parallel_suffix $parallel_train_opts \
          --minibatch-size=$this_minibatch_size --srand=$x "$mdl" \
          "ark:nnet-copy-egs --frame=$frame ark:$cur_egs_dir/egs.$archive.ark ark:-|nnet-shuffle-egs --buffer-size=$shuffle_buffer_size --srand=$x ark:- ark:-|" \
          $dir/$[$x+1].$n.mdl || touch $dir/.error &
      done
      wait
    )
    # the error message below is not that informative, but $cmd will
    # have printed a more specific one.
    [ -f $dir/.error ] && echo "$0: error on iteration $x of training" && exit 1;

    nnets_list=
    for n in `seq 1 $this_num_jobs`; do
      nnets_list="$nnets_list $dir/$[$x+1].$n.mdl"
    done

    if $do_average; then
      # average the output of the different jobs.
      $cmd $dir/log/average.$x.log \
        nnet-am-average $nnets_list $dir/$[$x+1].mdl || exit 1;
    else
      # choose the best from the different jobs.
      n=$(perl -e '($nj,$pat)=@ARGV; $best_n=1; $best_logprob=-1.0e+10; for ($n=1;$n<=$nj;$n++) {
          $fn = sprintf($pat,$n); open(F, "<$fn") || die "Error opening log file $fn";
          undef $logprob; while (<F>) { if (m/log-prob-per-frame=(\S+)/) { $logprob=$1; } }
          close(F); if (defined $logprob && $logprob > $best_logprob) { $best_logprob=$logprob;
          $best_n=$n; } } print "$best_n\n"; ' $num_jobs_nnet $dir/log/train.$x.%d.log) || exit 1;
      [ -z "$n" ] && echo "Error getting best model" && exit 1;
      cp $dir/$[$x+1].$n.mdl $dir/$[$x+1].mdl || exit 1;
    fi

    if [ "$mix_up" -gt 0 ] && [ $x -eq $mix_up_iter ]; then
      # mix up.
      echo Mixing up from $num_leaves to $mix_up components
      $cmd $dir/log/mix_up.$x.log \
        nnet-am-mixup --min-count=10 --num-mixtures=$mix_up \
        $dir/$[$x+1].mdl $dir/$[$x+1].mdl || exit 1;
    fi
    rm $nnets_list
    [ ! -f $dir/$[$x+1].mdl ] && exit 1;
    if [ -f $dir/$[$x-1].mdl ] && $cleanup && \
       [ $[($x-1)%100] -ne 0  ] && [ $[$x-1] -lt $first_model_combine ]; then
      rm $dir/$[$x-1].mdl
    fi
  fi
  x=$[$x+1]
  num_archives_processed=$[$num_archives_processed+$this_num_jobs]
done


if [ $stage -le $num_iters ]; then
  echo "Doing final combination to produce final.mdl"

  # Now do combination.
  nnets_list=()
  # the if..else..fi statement below sets 'nnets_list'.
  if [ $max_models_combine -lt $num_models_combine ]; then
    # The number of models to combine is too large, e.g. > 20.  In this case,
    # each argument to nnet-combine-fast will be an average of multiple models.
    cur_offset=0 # current offset from first_model_combine.
    for n in $(seq $max_models_combine); do
      next_offset=$[($n*$num_models_combine)/$max_models_combine]
      sub_list=""
      for o in $(seq $cur_offset $[$next_offset-1]); do
        iter=$[$first_model_combine+$o]
        mdl=$dir/$iter.mdl
        [ ! -f $mdl ] && echo "Expected $mdl to exist" && exit 1;
        sub_list="$sub_list $mdl"
      done
      nnets_list[$[$n-1]]="nnet-am-average $sub_list - |"
      cur_offset=$next_offset
    done
  else
    nnets_list=
    for n in $(seq 0 $[num_models_combine-1]); do
      iter=$[$first_model_combine+$n]
      mdl=$dir/$iter.mdl
      [ ! -f $mdl ] && echo "Expected $mdl to exist" && exit 1;
      nnets_list[$n]=$mdl
    done
  fi


  # Below, use --use-gpu=no to disable nnet-combine-fast from using a GPU, as
  # if there are many models it can give out-of-memory error; set num-threads to 8
  # to speed it up (this isn't ideal...)
  num_egs=`nnet-copy-egs ark:$cur_egs_dir/combine.egs ark:/dev/null 2>&1 | tail -n 1 | awk '{print $NF}'`
  mb=$[($num_egs+$combine_num_threads-1)/$combine_num_threads]
  [ $mb -gt 512 ] && mb=512
  # Setting --initial-model to a large value makes it initialize the combination
  # with the average of all the models.  It's important not to start with a
  # single model, or, due to the invariance to scaling that these nonlinearities
  # give us, we get zero diagonal entries in the fisher matrix that
  # nnet-combine-fast uses for scaling, which after flooring and inversion, has
  # the effect that the initial model chosen gets much higher learning rates
  # than the others.  This prevents the optimization from working well.
  $cmd $combine_parallel_opts $dir/log/combine.log \
    nnet-combine-fast --initial-model=100000 --num-lbfgs-iters=40 --use-gpu=no \
      --num-threads=$combine_num_threads \
      --verbose=3 --minibatch-size=$mb "${nnets_list[@]}" ark:$cur_egs_dir/combine.egs \
      $dir/final.mdl || exit 1;

  # Normalize stddev for affine or block affine layers that are followed by a
  # pnorm layer and then a normalize layer.
  $cmd $dir/log/normalize.log \
    nnet-normalize-stddev $dir/final.mdl $dir/final.mdl || exit 1;

  # Compute the probability of the final, combined model with
  # the same subset we used for the previous compute_probs, as the
  # different subsets will lead to different probs.
  $cmd $dir/log/compute_prob_valid.final.log \
    nnet-compute-prob $dir/final.mdl ark:$cur_egs_dir/valid_diagnostic.egs &
  $cmd $dir/log/compute_prob_train.final.log \
    nnet-compute-prob $dir/final.mdl ark:$cur_egs_dir/train_diagnostic.egs &
fi

if [ $stage -le $[$num_iters+1] ]; then
  echo "Getting average posterior for purposes of adjusting the priors."
  # Note: this just uses CPUs, using a smallish subset of data.
  rm $dir/post.$x.*.vec 2>/dev/null
  $cmd JOB=1:$num_jobs_compute_prior $dir/log/get_post.$x.JOB.log \
    nnet-copy-egs --frame=random --srand=JOB ark:$cur_egs_dir/egs.1.ark ark:- \| \
    nnet-subset-egs --srand=JOB --n=$prior_subset_size ark:- ark:- \| \
    nnet-compute-from-egs "nnet-to-raw-nnet $dir/final.mdl -|" ark:- ark:- \| \
    matrix-sum-rows ark:- ark:- \| vector-sum ark:- $dir/post.$x.JOB.vec || exit 1;

  sleep 3;  # make sure there is time for $dir/post.$x.*.vec to appear.

  $cmd $dir/log/vector_sum.$x.log \
   vector-sum $dir/post.$x.*.vec $dir/post.$x.vec || exit 1;

  rm $dir/post.$x.*.vec;

  echo "Re-adjusting priors based on computed posteriors"
  $cmd $dir/log/adjust_priors.final.log \
    nnet-adjust-priors $dir/final.mdl $dir/post.$x.vec $dir/final.mdl || exit 1;
fi


if [ ! -f $dir/final.mdl ]; then
  echo "$0: $dir/final.mdl does not exist."
  # we don't want to clean up if the training didn't succeed.
  exit 1;
fi

sleep 2

echo Done

if $cleanup; then
  echo Cleaning up data
  if $remove_egs && [[ $cur_egs_dir =~ $dir/egs* ]]; then
    steps/nnet2/remove_egs.sh $cur_egs_dir
  fi

  echo Removing most of the models
  for x in `seq 0 $num_iters`; do
    if [ $[$x%100] -ne 0 ] && [ $x -ne $num_iters ] && [ -f $dir/$x.mdl ]; then
       # delete all but every 100th model; don't delete the ones which combine to form the final model.
      rm $dir/$x.mdl
    fi
  done
fi