train_lvtln_model.sh
11.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#!/bin/bash
# Copyright 2014 Daniel Povey
# Apache 2.0
#
# This training script computes some things you will need in order to
# extract VTLN-warped features. It takes as input the data directory
# and an already-trained diagonal-covariance UBM. Note: although this
# script is in the lid/ directory, because it is intended to be
# used in language identification, but it uses features of the
# same type as those used in the speaker-id scripts (see ../sid/),
# i.e. double-delta features, rather than the "shifted delta cepstra"
# features commonly used in language id.
#
# This script works with either mfcc or plp features; for plp features, you will
# need to set the --base-feat-type option. Regardless, you will need to set the
# --mfcc-config or --plp-config option if your feature-extraction config is not
# called conf/${base_feat_type}.conf. The output of this script will be in
# $dir/final.lvtln and $dir/final.dubm and $dir/final.ali_dubm; the directory
# can be passed to ./get_vtln_warps.sh to get VTLN warps for a data directory,
# or (for data passed to this script) you can use the warping factors this
# script outputs in $dir/final.warp
#
# Begin configuration.
stage=-4 # This allows restarting after partway, when something when wrong.
config=
cmd=run.pl
num_iters=15 # Number of iterations of training.
num_utt_lvtln_init=400 # number of utterances (subset) to initialize
# LVTLN transform. Not too critical.
min_warp=0.85
max_warp=1.25
warp_step=0.01
base_feat_type=mfcc # or could be PLP.
mfcc_config=conf/mfcc.conf # default, can be overridden.
plp_config=conf/plp.conf # default, can be overridden.
logdet_scale=0.0
subsample=5 # We use every 5th frame by default; this is more
# CPU-efficient.
min_gaussian_weight=0.0001 # does not matter; inherited from diag-ubm training script.
nj=4
cleanup=true
num_gselect=15
# End configuration.
echo "$0 $@" # Print the command line for logging
[ -f path.sh ] && . ./path.sh;
. parse_options.sh || exit 1;
num_classes=$(perl -e "print int(1.5 + ($max_warp - $min_warp) / $warp_step);") || exit 1;
default_class=$(perl -e "print int(0.5 + (1.0 - $min_warp) / $warp_step);") || exit 1;
if [ $# != 3 ]; then
echo "Usage: $0 <data-dir> <diag-ubm-dir> <exp-dir>"
echo "e.g.: $0 data/train_vtln exp/diag_ubm_vtln exp/vtln"
echo "main options (for others, see top of script file)"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
echo " --nj <num-jobs> # number of jobs to use (default 4)"
echo " --config <config-file> # config containing options"
echo " --stage <stage> # stage to do partial re-run from."
echo " --num-iters <num-iters> # number of iterations of training"
echo " --base-feat-type <feat-type> # mfcc or plp, mfcc is default"
echo " --mfcc-config <config> # config for MFCC extraction, default is"
echo " # conf/mfcc.conf"
echo " --plp-config <config> # config for PLP extraction, default is"
echo " # conf/plp.conf"
exit 1;
fi
data=$1
ubmdir=$2
dir=$3
for f in $data/feats.scp $ubmdir/final.dubm; do
[ ! -f $f ] && echo "train_deltas.sh: no such file $f" && exit 1;
done
mkdir -p $dir/log
echo $nj > $dir/num_jobs
sdata=$data/split$nj;
split_data.sh $data $nj || exit 1;
cmvn_sliding_opts="--norm-vars=false --center=true --cmn-window=300"
# don't change $cmvn_sliding_opts, it should probably match the
# options used in ../sid/train_diag_ubm.sh.
sifeats="ark,s,cs:add-deltas scp:$sdata/JOB/feats.scp ark:- | apply-cmvn-sliding $cmvn_sliding_opts ark:- ark:- | select-voiced-frames ark:- scp,s,cs:$sdata/JOB/vad.scp ark:- | subsample-feats --n=$subsample ark:- ark:- |"
# for the subsets of features that we use to estimate the linear transforms, we
# don't bother with CMN. This will give us wrong offsets on the transforms,
# but it won't matter because we will allow an arbitrary bias term when we apply
# these transforms.
# you need to define CLASS when invoking $cmd on featsub_warped.
featsub_warped="ark:add-deltas ark:$dir/feats.CLASS.ark ark:- | select-voiced-frames ark:- scp,s,cs:$data/vad.scp ark:- | subsample-feats --n=$subsample ark:- ark:- |"
featsub_unwarped="ark:add-deltas ark:$dir/feats.$default_class.ark ark:- | select-voiced-frames ark:- scp,s,cs:$data/vad.scp ark:- | subsample-feats --n=$subsample ark:- ark:- |"
if [ -f $data/utt2warp ]; then
echo "$0: source data directory $data appears to already have VTLN.";
exit 1;
fi
# create a small subset of utterances for purposes of initializing the LVTLN transform
# utils/shuffle_list.pl is deterministic, unlike sort -R.
cat $data/utt2spk | awk '{print $1}' | utils/shuffle_list.pl | \
head -n $num_utt_lvtln_init > $dir/utt_subset
if [ $stage -le -4 ]; then
echo "$0: computing warped subset of features"
if [ -f $data/segments ]; then
echo "$0 [info]: segments file exists: using that."
subset_feats="utils/filter_scp.pl $dir/utt_subset $data/segments | extract-segments scp:$data/wav.scp - ark:- "
else
echo "$0 [info]: no segments file exists: using wav.scp directly."
subset_feats="utils/filter_scp.pl $dir/utt_subset $data/wav.scp | wav-copy scp:- ark:- "
fi
rm $dir/.error 2>/dev/null
for c in $(seq 0 $[$num_classes-1]); do
this_warp=$(perl -e "print ($min_warp + ($c*$warp_step));")
this_config=""
if [ "$base_feat_type" = "mfcc" ]; then
this_config="$mfcc_config"
else
this_config="$plp_config"
fi
$cmd $dir/log/compute_warped_feats.$c.log \
$subset_feats \| compute-${base_feat_type}-feats --verbose=2 \
--config=$this_config --vtln-warp=$this_warp ark:- ark:- \| \
copy-feats --compress=true ark:- ark:$dir/feats.$c.ark || touch $dir/.error &
done
wait;
if [ -f $dir/.error ]; then
echo "$0: Computing warped features failed: check $dir/log/compute_warped_feats.*.log"
exit 1;
fi
fi
if ! utils/filter_scp.pl $dir/utt_subset $data/feats.scp | \
compare-feats --threshold=0.95 scp:- ark:$dir/feats.$default_class.ark >&/dev/null; then
echo "$0: features stored on disk differ from those computed with no warping."
echo " Possibly your feature type is wrong (--base-feat-type option)"
exit 1;
fi
if [ -f $data/segments ]; then
subset_utts="ark:extract-segments scp:$sdata/JOB/wav.scp $sdata/JOB/segments ark:- |"
else
echo "$0 [info]: no segments file exists: using wav.scp directly."
subset_utts="ark:wav-copy scp:$sdata/JOB/wav.scp ark:- |"
fi
if [ $stage -le -3 ]; then
echo "$0: initializing base LVTLN transforms in $dir/0.lvtln (ignore warnings below)"
dim=$(feat-to-dim "$featsub_unwarped" - ) || exit 1;
$cmd $dir/log/init_lvtln.log \
gmm-init-lvtln --dim=$dim --num-classes=$num_classes --default-class=$default_class \
$dir/0.lvtln || exit 1;
for c in $(seq 0 $[$num_classes-1]); do
this_warp=$(perl -e "print ($min_warp + ($c*$warp_step));")
orig_feats=ark:$dir/feats.$default_class.ark
warped_feats=ark:$dir/feats.$c.ark
logfile=$dir/log/train_special.$c.log
this_featsub_warped="$(echo $featsub_warped | sed s/CLASS/$c/)"
if ! gmm-train-lvtln-special --warp=$this_warp --normalize-var=true \
$c $dir/0.lvtln $dir/0.lvtln \
"$featsub_unwarped" "$this_featsub_warped" 2>$logfile; then
echo "$0: Error training LVTLN transform, see $logfile";
exit 1;
fi
done
fi
cp $ubmdir/final.dubm $dir/0.dubm
if [ $stage -le -2 ]; then
echo "$0: computing Gaussian selection info."
$cmd JOB=1:$nj $dir/log/gselect.JOB.log \
gmm-gselect --n=$num_gselect $ubmdir/final.dubm "$sifeats" \
"ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1;
fi
if [ $stage -le -1 ]; then
echo "$0: computing initial LVTLN transforms" # do this per-utt.
$cmd JOB=1:$nj $dir/log/lvtln.0.JOB.log \
gmm-global-gselect-to-post $dir/0.dubm "$sifeats" \
"ark,s,cs:gunzip -c $dir/gselect.JOB.gz|" ark:- \| \
gmm-global-est-lvtln-trans --logdet-scale=$logdet_scale --verbose=1 \
$dir/0.dubm $dir/0.lvtln "$sifeats" ark,s,cs:- ark:$dir/trans.0.JOB ark,t:$dir/warp.0.JOB || exit 1
# consolidate the warps into one file.
for j in $(seq $nj); do cat $dir/warp.0.$j; done > $dir/warp.0
rm $dir/warp.0.*
fi
x=0
while [ $x -lt $num_iters ]; do
feats="$sifeats transform-feats ark:$dir/trans.$x.JOB ark:- ark:- |"
# First update the model.
if [ $stage -le $x ]; then
echo "$0: Updating model on pass $x"
# Accumulate stats.
$cmd JOB=1:$nj $dir/log/acc.$x.JOB.log \
gmm-global-acc-stats "--gselect=ark,s,cs:gunzip -c $dir/gselect.JOB.gz|" \
$dir/$x.dubm "$feats" $dir/$x.JOB.acc || exit 1;
$cmd $dir/log/update.$x.log \
gmm-global-est --remove-low-count-gaussians=false --min-gaussian-weight=$min_gaussian_weight \
$dir/$x.dubm "gmm-global-sum-accs - $dir/$x.*.acc|" \
$dir/$[$x+1].dubm || exit 1;
$cleanup && rm $dir/$x.*.acc $dir/$x.dubm
fi
# Now update the LVTLN transforms (and warps.)
if [ $stage -le $x ]; then
echo "$0: re-estimating LVTLN transforms on pass $x"
$cmd JOB=1:$nj $dir/log/lvtln.$x.JOB.log \
gmm-global-gselect-to-post $dir/$[$x+1].dubm "$feats" \
"ark,s,cs:gunzip -c $dir/gselect.JOB.gz|" ark:- \| \
gmm-global-est-lvtln-trans --logdet-scale=$logdet_scale --verbose=1 \
$dir/$[$x+1].dubm $dir/0.lvtln "$sifeats" ark,s,cs:- \
ark:$dir/trans.$[$x+1].JOB ark,t:$dir/warp.$[$x+1].JOB || exit 1
# consolidate the warps into one file.
for j in $(seq $nj); do cat $dir/warp.$[$x+1].$j; done > $dir/warp.$[$x+1]
rm $dir/warp.$[$x+1].*
$cleanup && rm $dir/trans.$x.*
fi
x=$[$x+1]
done
feats="$sifeats transform-feats ark:$dir/trans.$x.JOB ark:- ark:- |"
if [ $stage -le $x ]; then
# Accumulate stats for "alignment model"-- this model is computed with the
# speaker-independent features, but matches Gaussian-for-Gaussian with the
# final speaker-adapted model.
$cmd JOB=1:$nj $dir/log/acc_alimdl.JOB.log \
gmm-global-acc-stats-twofeats "--gselect=ark,s,cs:gunzip -c $dir/gselect.JOB.gz|" \
$dir/$x.dubm "$feats" "$sifeats" $dir/$x.JOB.acc || exit 1
[ `ls $dir/$x.*.acc | wc -w` -ne "$nj" ] && echo "$0: Wrong #accs" && exit 1;
# Update model.
$cmd $dir/log/est_alimdl.log \
gmm-global-est --min-gaussian-weight=$min_gaussian_weight \
--remove-low-count-gaussians=false $dir/$x.dubm \
"gmm-global-sum-accs - $dir/$x.*.acc|" $dir/$x.ali_dubm || exit 1;
$cleanup && rm $dir/$x.*.acc
fi
if true; then # Diagnostics
ln -sf warp.$x $dir/final.warp
if [ -f $data/spk2gender ]; then
# To make it easier to eyeball the male and female speakers' warps
# separately, separate them out.
for g in m f; do # means: for gender in male female
cat $dir/final.warp | \
utils/filter_scp.pl <(grep -w $g $data/spk2gender | awk '{print $1}') > $dir/final.warp.$g
echo -n "The last few warp factors for gender $g are: "
tail -n 10 $dir/final.warp.$g | awk '{printf("%s ", $2);}';
echo
done
fi
fi
ln -sf $x.dubm $dir/final.dubm
ln -sf $x.ali_dubm $dir/final.ali_dubm
ln -sf 0.lvtln $dir/final.lvtln
# Summarize warning messages...
utils/summarize_warnings.pl $dir/log
echo "$0: Done training LVTLN model in $dir"