run_ivector_common.sh
4.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#!/bin/bash
set -euo pipefail
# This script is called from local/nnet3/run_tdnn.sh and
# local/chain/run_tdnn.sh (and may eventually be called by more
# scripts). It contains the common feature preparation and
# iVector-related parts of the script. See those scripts for examples
# of usage.
stage=0
train_set=train
test_sets="dev"
gmm=tri3b
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
gmm_dir=exp/${gmm}
ali_dir=exp/${gmm}_ali_${train_set}_sp
for f in data/${train_set}/feats.scp ${gmm_dir}/final.mdl; do
if [ ! -f $f ]; then
echo "$0: expected file $f to exist"
exit 1
fi
done
if [ $stage -le 1 ]; then
# Although the nnet will be trained by high resolution data, we still have to
# perturb the normal data to get the alignment _sp stands for speed-perturbed
echo "$0: preparing directory for low-resolution speed-perturbed data (for alignment)"
utils/data/perturb_data_dir_speed_3way.sh data/${train_set} data/${train_set}_sp
echo "$0: making MFCC features for low-resolution speed-perturbed data"
steps/make_mfcc.sh --cmd "$train_cmd" --nj 17 data/${train_set}_sp || exit 1;
steps/compute_cmvn_stats.sh data/${train_set}_sp || exit 1;
utils/fix_data_dir.sh data/${train_set}_sp
fi
if [ $stage -le 2 ]; then
echo "$0: aligning with the perturbed low-resolution data"
steps/align_fmllr.sh --nj 16 --cmd "$train_cmd" \
data/${train_set}_sp data/lang $gmm_dir $ali_dir || exit 1
fi
if [ $stage -le 3 ]; then
# Create high-resolution MFCC features (with 40 cepstra instead of 13).
# this shows how you can split across multiple file-systems.
echo "$0: creating high-resolution MFCC features"
mfccdir=data/${train_set}_sp_hires/data
for datadir in ${train_set}_sp ${test_sets}; do
utils/copy_data_dir.sh data/$datadir data/${datadir}_hires
done
# do volume-perturbation on the training data prior to extracting hires
# features; this helps make trained nnets more invariant to test data volume.
#utils/data/perturb_data_dir_volume.sh data/${train_set}_sp_hires || exit 1;
for datadir in ${train_set}_sp ${test_sets}; do
steps/make_mfcc.sh --nj 16 --mfcc-config conf/mfcc_hires.conf \
--cmd "$train_cmd" data/${datadir}_hires || exit 1;
steps/compute_cmvn_stats.sh data/${datadir}_hires || exit 1;
utils/fix_data_dir.sh data/${datadir}_hires || exit 1;
done
fi
if [ $stage -le 4 ]; then
# Train a small system just for its LDA+MLLT transform. We use --num-iters 13
# because after we get the transform (12th iter is the last), any further
# training is pointless.
steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 13 \
--realign-iters "" --splice-opts "--left-context=3 --right-context=3" \
5000 10000 data/${train_set}_sp_hires data/lang \
$ali_dir exp/nnet3/tri5b || exit 1
fi
if [ $stage -le 5 ]; then
echo "$0: training the diagonal UBM."
steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj 16 --num-frames 200000 \
data/${train_set}_sp_hires 256 exp/nnet3/tri5b exp/nnet3/diag_ubm || exit 1
fi
if [ $stage -le 6 ]; then
# Train the iVector extractor. Use all of the speed-perturbed data since iVector extractors
# can be sensitive to the amount of data. The iVector dimension of 50.
# even though $nj is just 10, each job uses multiple processes and threads.
echo "$0: training the iVector extractor"
steps/online/nnet2/train_ivector_extractor.sh --cmd "$train_cmd" \
--nj 10 --num-processes 1 --num-threads 2 --ivector-dim 50 \
data/${train_set}_sp_hires exp/nnet3/diag_ubm exp/nnet3/extractor || exit 1;
fi
if [ $stage -le 7 ]; then
# We extract iVectors on the speed-perturbed training data after combining
# short segments, which will be what we train the system on. With
# --utts-per-spk-max 2, the script pairs the utterances into twos, and treats
# each of these pairs as one speaker; this gives more diversity in iVectors..
# Note that these are extracted 'online'.
# note, we don't encode the 'max2' in the name of the ivectordir even though
# that's the data we extract the ivectors from, as it's still going to be
# valid for the non-'max2' data, the utterance list is the same.
ivectordir=exp/nnet3/ivectors_${train_set}_sp_hires
# having a larger number of speakers is helpful for generalization, and to
# handle per-utterance decoding well (iVector starts at zero).
temp_data_root=${ivectordir}
utils/data/modify_speaker_info.sh --utts-per-spk-max 2 \
data/${train_set}_sp_hires ${temp_data_root}/${train_set}_sp_hires_max2
steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 16 \
${temp_data_root}/${train_set}_sp_hires_max2 \
exp/nnet3/extractor $ivectordir
# Also extract iVectors for the test data, but in this case we don't need the speed
# perturbation (sp).
for data in $test_sets; do
steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 6 \
data/${data}_hires exp/nnet3/extractor exp/nnet3/ivectors_${data}_hires
done
fi
exit 0;