run_tdnn_1f.sh
12.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#!/bin/bash
# 1f is as 1e but a smaller model with various tuning changes, the most
# important of which is the 'bottleneck-dim' option for the last layer;
# also dimensions are reduced and we've removed the 'target-rms=0.5' options
# on the prefinal layers.
#
# local/chain/compare_wer.sh --online exp/chain/tdnn1{e,f}_sp 2>/dev/null
# local/chain/compare_wer.sh --online exp/chain/tdnn1e_sp exp/chain/tdnn1f_sp
# System tdnn1e_sp tdnn1f_sp
#WER dev_clean_2 (tgsmall) 14.11 13.91
# [online:] 14.07 13.96
#WER dev_clean_2 (tglarge) 10.15 9.95
# [online:] 10.16 10.13
# Final train prob -0.0503 -0.0508
# Final valid prob -0.0887 -0.0917
# Final train prob (xent) -1.4257 -1.3509
# Final valid prob (xent) -1.6799 -1.5883
# Num-params 7508490 4205322
# steps/info/chain_dir_info.pl exp/chain/tdnn1{e,f}_sp
# exp/chain/tdnn1e_sp: num-iters=17 nj=2..5 num-params=7.5M dim=40+100->2309 combine=-0.057->-0.057 (over 1) xent:train/valid[10,16,final]=(-1.73,-1.46,-1.43/-1.94,-1.72,-1.68) logprob:train/valid[10,16,final]=(-0.067,-0.055,-0.050/-0.105,-0.095,-0.089)
# exp/chain/tdnn1f_sp: num-iters=17 nj=2..5 num-params=4.2M dim=40+100->2309 combine=-0.060->-0.060 (over 2) xent:train/valid[10,16,final]=(-1.60,-1.39,-1.35/-1.81,-1.64,-1.59) logprob:train/valid[10,16,final]=(-0.068,-0.056,-0.051/-0.104,-0.097,-0.092)
# Set -e here so that we catch if any executable fails immediately
set -euo pipefail
# First the options that are passed through to run_ivector_common.sh
# (some of which are also used in this script directly).
stage=0
decode_nj=10
train_set=train_clean_5
test_sets=dev_clean_2
gmm=tri3b
nnet3_affix=
# The rest are configs specific to this script. Most of the parameters
# are just hardcoded at this level, in the commands below.
affix=1f # affix for the TDNN directory name
tree_affix=
train_stage=-10
get_egs_stage=-10
decode_iter=
# training options
# training chunk-options
chunk_width=140,100,160
# we don't need extra left/right context for TDNN systems.
chunk_left_context=0
chunk_right_context=0
common_egs_dir=
xent_regularize=0.1
# training options
srand=0
remove_egs=true
reporting_email=
#decode options
test_online_decoding=true # if true, it will run the last decoding stage.
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet3 setup, and you can skip them by setting "--stage 11" if you have already
# run those things.
local/nnet3/run_ivector_common.sh --stage $stage \
--train-set $train_set \
--gmm $gmm \
--nnet3-affix "$nnet3_affix" || exit 1;
# Problem: We have removed the "train_" prefix of our training set in
# the alignment directory names! Bad!
gmm_dir=exp/$gmm
ali_dir=exp/${gmm}_ali_${train_set}_sp
tree_dir=exp/chain${nnet3_affix}/tree_sp${tree_affix:+_$tree_affix}
lang=data/lang_chain
lat_dir=exp/chain${nnet3_affix}/${gmm}_${train_set}_sp_lats
dir=exp/chain${nnet3_affix}/tdnn${affix}_sp
train_data_dir=data/${train_set}_sp_hires
lores_train_data_dir=data/${train_set}_sp
train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires
for f in $gmm_dir/final.mdl $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
$lores_train_data_dir/feats.scp $ali_dir/ali.1.gz; do
[ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
done
if [ $stage -le 10 ]; then
echo "$0: creating lang directory $lang with chain-type topology"
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
if [ -d $lang ]; then
if [ $lang/L.fst -nt data/lang/L.fst ]; then
echo "$0: $lang already exists, not overwriting it; continuing"
else
echo "$0: $lang already exists and seems to be older than data/lang..."
echo " ... not sure what to do. Exiting."
exit 1;
fi
else
cp -r data/lang $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi
fi
if [ $stage -le 11 ]; then
# Get the alignments as lattices (gives the chain training more freedom).
# use the same num-jobs as the alignments
steps/align_fmllr_lats.sh --nj 75 --cmd "$train_cmd" ${lores_train_data_dir} \
data/lang $gmm_dir $lat_dir
rm $lat_dir/fsts.*.gz # save space
fi
if [ $stage -le 12 ]; then
# Build a tree using our new topology. We know we have alignments for the
# speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use
# those. The num-leaves is always somewhat less than the num-leaves from
# the GMM baseline.
if [ -f $tree_dir/final.mdl ]; then
echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it."
exit 1;
fi
steps/nnet3/chain/build_tree.sh \
--frame-subsampling-factor 3 \
--context-opts "--context-width=2 --central-position=1" \
--cmd "$train_cmd" 3500 ${lores_train_data_dir} \
$lang $ali_dir $tree_dir
fi
if [ $stage -le 13 ]; then
mkdir -p $dir
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}')
learning_rate_factor=$(echo "print (0.5/$xent_regularize)" | python)
opts="l2-regularize=0.05"
output_opts="l2-regularize=0.02 bottleneck-dim=192"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
# the first splicing is moved before the lda layer, so no splicing here
relu-batchnorm-layer name=tdnn1 $opts dim=384
relu-batchnorm-layer name=tdnn2 $opts dim=384 input=Append(-1,0,1)
relu-batchnorm-layer name=tdnn3 $opts dim=384
relu-batchnorm-layer name=tdnn4 $opts dim=384 input=Append(-1,0,1)
relu-batchnorm-layer name=tdnn5 $opts dim=384
relu-batchnorm-layer name=tdnn6 $opts dim=384 input=Append(-3,0,3)
relu-batchnorm-layer name=tdnn7 $opts dim=384 input=Append(-3,0,3)
relu-batchnorm-layer name=tdnn8 $opts dim=512 input=Append(-6,-3,0)
## adding the layers for chain branch
relu-batchnorm-layer name=prefinal-chain $opts dim=384
output-layer name=output include-log-softmax=false $output_opts dim=$num_targets max-change=1.5
# adding the layers for xent branch
# This block prints the configs for a separate output that will be
# trained with a cross-entropy objective in the 'chain' models... this
# has the effect of regularizing the hidden parts of the model. we use
# 0.5 / args.xent_regularize as the learning rate factor- the factor of
# 0.5 / args.xent_regularize is suitable as it means the xent
# final-layer learns at a rate independent of the regularization
# constant; and the 0.5 was tuned so as to make the relative progress
# similar in the xent and regular final layers.
relu-batchnorm-layer name=prefinal-xent input=tdnn8 $opts dim=384
output-layer name=output-xent $output_opts dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 14 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{3,4,5,6}/$USER/kaldi-data/egs/mini_librispeech-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
fi
steps/nnet3/chain/train.py --stage=$train_stage \
--cmd="$decode_cmd" \
--feat.online-ivector-dir=$train_ivector_dir \
--feat.cmvn-opts="--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient=0.1 \
--chain.l2-regularize=0.00005 \
--chain.apply-deriv-weights=false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--trainer.srand=$srand \
--trainer.max-param-change=2.0 \
--trainer.num-epochs=10 \
--trainer.frames-per-iter=3000000 \
--trainer.optimization.num-jobs-initial=2 \
--trainer.optimization.num-jobs-final=5 \
--trainer.optimization.initial-effective-lrate=0.001 \
--trainer.optimization.final-effective-lrate=0.0001 \
--trainer.optimization.shrink-value=1.0 \
--trainer.num-chunk-per-minibatch=256,128,64 \
--trainer.optimization.momentum=0.0 \
--egs.chunk-width=$chunk_width \
--egs.chunk-left-context=$chunk_left_context \
--egs.chunk-right-context=$chunk_right_context \
--egs.chunk-left-context-initial=0 \
--egs.chunk-right-context-final=0 \
--egs.dir="$common_egs_dir" \
--egs.opts="--frames-overlap-per-eg 0" \
--cleanup.remove-egs=$remove_egs \
--use-gpu=true \
--reporting.email="$reporting_email" \
--feat-dir=$train_data_dir \
--tree-dir=$tree_dir \
--lat-dir=$lat_dir \
--dir=$dir || exit 1;
fi
if [ $stage -le 15 ]; then
# Note: it's not important to give mkgraph.sh the lang directory with the
# matched topology (since it gets the topology file from the model).
utils/mkgraph.sh \
--self-loop-scale 1.0 data/lang_test_tgsmall \
$tree_dir $tree_dir/graph_tgsmall || exit 1;
fi
if [ $stage -le 16 ]; then
frames_per_chunk=$(echo $chunk_width | cut -d, -f1)
rm $dir/.error 2>/dev/null || true
for data in $test_sets; do
(
nspk=$(wc -l <data/${data}_hires/spk2utt)
steps/nnet3/decode.sh \
--acwt 1.0 --post-decode-acwt 10.0 \
--extra-left-context $chunk_left_context \
--extra-right-context $chunk_right_context \
--extra-left-context-initial 0 \
--extra-right-context-final 0 \
--frames-per-chunk $frames_per_chunk \
--nj $nspk --cmd "$decode_cmd" --num-threads 4 \
--online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${data}_hires \
$tree_dir/graph_tgsmall data/${data}_hires ${dir}/decode_tgsmall_${data} || exit 1
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
data/lang_test_{tgsmall,tglarge} \
data/${data}_hires ${dir}/decode_{tgsmall,tglarge}_${data} || exit 1
) || touch $dir/.error &
done
wait
[ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1
fi
# Not testing the 'looped' decoding separately, because for
# TDNN systems it would give exactly the same results as the
# normal decoding.
if $test_online_decoding && [ $stage -le 17 ]; then
# note: if the features change (e.g. you add pitch features), you will have to
# change the options of the following command line.
steps/online/nnet3/prepare_online_decoding.sh \
--mfcc-config conf/mfcc_hires.conf \
$lang exp/nnet3${nnet3_affix}/extractor ${dir} ${dir}_online
rm $dir/.error 2>/dev/null || true
for data in $test_sets; do
(
nspk=$(wc -l <data/${data}_hires/spk2utt)
# note: we just give it "data/${data}" as it only uses the wav.scp, the
# feature type does not matter.
steps/online/nnet3/decode.sh \
--acwt 1.0 --post-decode-acwt 10.0 \
--nj $nspk --cmd "$decode_cmd" \
$tree_dir/graph_tgsmall data/${data} ${dir}_online/decode_tgsmall_${data} || exit 1
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
data/lang_test_{tgsmall,tglarge} \
data/${data}_hires ${dir}_online/decode_{tgsmall,tglarge}_${data} || exit 1
) || touch $dir/.error &
done
wait
[ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1
fi
exit 0;