run.sh
16.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
#!/bin/bash
# Copyright 2016 Allen Guo
# 2017 Xiaohui Zhang
# Apache 2.0
. ./cmd.sh
. ./path.sh
# paths to corpora (see below for example)
ami=
fisher=
librispeech=
swbd=
tedlium2=
wsj0=
wsj1=
eval2000=
rt03=
set -e
# check for kaldi_lm
which get_word_map.pl > /dev/null
if [ $? -ne 0 ]; then
echo "This recipe requires installation of tools/kaldi_lm. Please run extras/kaldi_lm.sh in tools/" && exit 1;
fi
# preset paths
case $(hostname -d) in
clsp.jhu.edu)
ami=/export/corpora4/ami/amicorpus
fisher="/export/corpora3/LDC/LDC2004T19 /export/corpora3/LDC/LDC2005T19 \
/export/corpora3/LDC/LDC2004S13 /export/corpora3/LDC/LDC2005S13"
librispeech=/export/a15/vpanayotov/data
swbd=/export/corpora3/LDC/LDC97S62
tedlium2=/export/corpora5/TEDLIUM_release2
wsj0=/export/corpora5/LDC/LDC93S6B
wsj1=/export/corpora5/LDC/LDC94S13B
eval2000="/export/corpora/LDC/LDC2002S09/hub5e_00 /export/corpora/LDC/LDC2002T43"
rt03="/export/corpora/LDC/LDC2007S10"
hub4_en_96="/export/corpora/LDC/LDC97T22/hub4_eng_train_trans /export/corpora/LDC/LDC97S44/data"
hub4_en_97="/export/corpora/LDC/LDC98T28/hub4e97_trans_980217 /export/corpora/LDC/LDC98S71/97_eng_bns_hub4"
;;
esac
# general options
stage=1
cleanup_stage=1
multi=multi_a # This defines the "variant" we're using; see README.md
srilm_opts="-subset -prune-lowprobs -unk -tolower -order 3"
. utils/parse_options.sh
# Prepare the basic dictionary (a combination of swbd+CMU+tedlium lexicons) in data/local/dict_combined.
# and train a G2P model using the combined lexicon
# in data/local/dict_combined
if [ $stage -le 1 ]; then
# We prepare the basic dictionary in data/local/dict_combined.
local/prepare_dict.sh $swbd $tedlium2
(
steps/dict/train_g2p_phonetisaurus.sh --stage 0 --silence-phones \
"data/local/dict_combined/silence_phones.txt" data/local/dict_combined/lexicon.txt exp/g2p || touch exp/g2p/.error
) &
fi
# Prepare corpora data
if [ $stage -le 2 ]; then
mkdir -p data/local
# fisher
local/fisher_data_prep.sh $fisher
utils/fix_data_dir.sh data/fisher/train
# swbd
local/swbd1_data_prep.sh $swbd
utils/fix_data_dir.sh data/swbd/train
# librispeech
local/librispeech_data_prep.sh $librispeech/LibriSpeech/train-clean-100 data/librispeech_100/train
local/librispeech_data_prep.sh $librispeech/LibriSpeech/train-clean-360 data/librispeech_360/train
local/librispeech_data_prep.sh $librispeech/LibriSpeech/train-other-500 data/librispeech_500/train
local/librispeech_data_prep.sh $librispeech/LibriSpeech/test-clean data/librispeech/test
# tedlium
local/tedlium_prepare_data.sh $tedlium2
# wsj
local/wsj_data_prep.sh $wsj0/??-{?,??}.? $wsj1/??-{?,??}.?
local/wsj_format_data.sh
utils/copy_data_dir.sh --spk_prefix wsj_ --utt_prefix wsj_ data/wsj/train_si284 data/wsj/train
rm -r data/wsj/train_si284 2>/dev/null || true
# hub4_en
local/hub4_en_data_prep.sh $hub4_en_96 $hub4_en_97
# eval2000 (test)
local/eval2000_data_prep.sh $eval2000
utils/fix_data_dir.sh data/eval2000/test
# rt03 (test)
local/rt03_data_prep.sh $rt03
utils/fix_data_dir.sh data/rt03/test
fi
# Normalize transcripts
if [ $stage -le 3 ]; then
for f in data/*/{train,test}/text; do
echo Normalizing $f
cp $f $f.orig
local/normalize_transcript.py $f.orig > $f
done
fi
# Synthesize pronounciations for OOV words across all training transcripts and produce the final lexicon.
if [ $stage -le 4 ]; then
wait # Waiting for train_g2p.sh to finish
if [ -f exp/g2p/.error ]; then
rm exp/g2p/.error || true
echo "Fail to train the G2P model." && exit 1;
fi
dict_dir=data/local/dict_nosp
mkdir -p $dict_dir
rm $dict_dir/lexiconp.txt 2>/dev/null || true
cp data/local/dict_combined/{extra_questions,nonsilence_phones,silence_phones,optional_silence}.txt $dict_dir
echo 'Gathering missing words...'
lexicon=data/local/dict_combined/lexicon.txt
g2p_tmp_dir=data/local/g2p_phonetisarus
mkdir -p $g2p_tmp_dir
# awk command from http://stackoverflow.com/questions/2626274/print-all-but-the-first-three-columns
cat data/*/train/text | \
local/count_oovs.pl $lexicon | \
awk '{if (NF > 3 ) {for(i=4; i<NF; i++) printf "%s ",$i; print $NF;}}' | \
perl -ape 's/\s/\n/g;' | \
sort | uniq > $g2p_tmp_dir/missing.txt
cat $g2p_tmp_dir/missing.txt | \
grep "^[a-z]*$" > $g2p_tmp_dir/missing_onlywords.txt
steps/dict/apply_g2p_phonetisaurus.sh --nbest 1 $g2p_tmp_dir/missing_onlywords.txt exp/g2p exp/g2p/oov_lex || exit 1;
cp exp/g2p/oov_lex/lexicon.lex $g2p_tmp_dir/missing_lexicon.txt
extended_lexicon=$dict_dir/lexicon.txt
echo "Adding new pronunciations to get extended lexicon $extended_lexicon"
cat <(cut -f 1,3 $g2p_tmp_dir/missing_lexicon.txt) $lexicon | sort | uniq > $extended_lexicon
fi
# We'll do multiple iterations of pron/sil-prob estimation. So the structure of
# the dict/lang dirs are designed as ${dict/lang_root}_${dict_affix}, where dict_affix
# is "nosp" or the name of the acoustic model we use to estimate pron/sil-probs.
dict_root=data/local/dict
lang_root=data/lang
# prepare (and validate) lang directory
if [ $stage -le 5 ]; then
utils/prepare_lang.sh ${dict_root}_nosp "<unk>" data/local/tmp/lang_nosp ${lang_root}_nosp
fi
# prepare LM and test lang directory
if [ $stage -le 6 ]; then
mkdir -p data/local/lm
cat data/{fisher,swbd}/train/text > data/local/lm/text
local/train_lms.sh # creates data/local/lm/3gram-mincount/lm_unpruned.gz
utils/format_lm_sri.sh --srilm-opts "$srilm_opts" \
${lang_root}_nosp data/local/lm/3gram-mincount/lm_unpruned.gz \
${dict_root}_nosp/lexicon.txt ${lang_root}_nosp_fsh_sw1_tg
fi
# make training features
if [ $stage -le 7 ]; then
mfccdir=mfcc
corpora="hub4_en fisher librispeech_100 librispeech_360 librispeech_500 swbd tedlium wsj"
for c in $corpora; do
(
data=data/$c/train
steps/make_mfcc.sh --mfcc-config conf/mfcc.conf \
--cmd "$train_cmd" --nj 40 \
$data exp/make_mfcc/$c/train || touch $data/.error
steps/compute_cmvn_stats.sh \
$data exp/make_mfcc/$c/train || touch $data/.error
) &
done
wait
if [ -f $data/.error ]; then
rm $data/.error || true
echo "Fail to extract features." && exit 1;
fi
fi
# fix and validate training data directories
if [ $stage -le 8 ]; then
# get rid of spk2gender files because not all corpora have them
rm data/*/train/spk2gender 2>/dev/null || true
# create reco2channel_and_file files for wsj and librispeech
for c in wsj librispeech_100 librispeech_360 librispeech_500; do
awk '{print $1, $1, "A"}' data/$c/train/wav.scp > data/$c/train/reco2file_and_channel;
done
# apply standard fixes, then validate
for f in data/*/train; do
utils/fix_data_dir.sh $f
utils/validate_data_dir.sh $f
done
fi
# make test features
if [ $stage -le 9 ]; then
mfccdir=mfcc
corpora="tedlium eval2000 rt03 librispeech"
for c in $corpora; do
data=data/$c/test
steps/make_mfcc.sh --mfcc-config conf/mfcc.conf \
--cmd "$train_cmd" --nj 20 \
$data exp/make_mfcc/$c/test || exit 1;
steps/compute_cmvn_stats.sh \
$data exp/make_mfcc/$c/test || exit 1;
done
fi
# fix and validate test data directories
if [ $stage -le 10 ]; then
for f in data/*/test; do
utils/fix_data_dir.sh $f
utils/validate_data_dir.sh $f
done
fi
# train mono on swbd 10k short (nodup)
if [ $stage -le 11 ]; then
local/make_partitions.sh --multi $multi --stage 1 || exit 1;
steps/train_mono.sh --boost-silence 1.25 --nj 20 --cmd "$train_cmd" \
data/$multi/mono ${lang_root}_nosp exp/$multi/mono || exit 1;
fi
# train tri1a and tri1b (first and second triphone passes) on swbd 30k (nodup)
if [ $stage -le 12 ]; then
local/make_partitions.sh --multi $multi --stage 2 || exit 1;
steps/align_si.sh --boost-silence 1.25 --nj 20 --cmd "$train_cmd" \
data/$multi/mono_ali ${lang_root}_nosp exp/$multi/mono exp/$multi/mono_ali || exit 1;
steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" 3200 30000 \
data/$multi/tri1a ${lang_root}_nosp exp/$multi/mono_ali exp/$multi/tri1a || exit 1;
steps/align_si.sh --boost-silence 1.25 --nj 20 --cmd "$train_cmd" \
data/$multi/tri1a_ali ${lang_root}_nosp exp/$multi/tri1a exp/$multi/tri1a_ali || exit 1;
steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" 3200 30000 \
data/$multi/tri1b ${lang_root}_nosp exp/$multi/tri1a_ali exp/$multi/tri1b || exit 1;
# decode
(
gmm=tri1b
graph_dir=exp/$multi/$gmm/graph_tg
utils/mkgraph.sh ${lang_root}_nosp_fsh_sw1_tg \
exp/$multi/$gmm $graph_dir || exit 1;
for e in eval2000 rt03; do
steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
data/$e/test exp/$multi/$gmm/decode_tg_$e || exit 1;
done
)&
fi
# train tri2 (third triphone pass) on swbd 100k (nodup)
if [ $stage -le 13 ]; then
local/make_partitions.sh --multi $multi --stage 3 || exit 1;
steps/align_si.sh --boost-silence 1.25 --nj 50 --cmd "$train_cmd" \
data/$multi/tri1b_ali ${lang_root}_nosp exp/$multi/tri1b exp/$multi/tri1b_ali || exit 1;
steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" 5500 90000 \
data/$multi/tri2 ${lang_root}_nosp exp/$multi/tri1b_ali exp/$multi/tri2 || exit 1;
fi
# train tri3a (4th triphone pass) on whole swbd
if [ $stage -le 14 ]; then
local/make_partitions.sh --multi $multi --stage 4 || exit 1;
steps/align_si.sh --boost-silence 1.25 --nj 100 --cmd "$train_cmd" \
data/$multi/tri2_ali ${lang_root}_nosp exp/$multi/tri2 exp/$multi/tri2_ali || exit 1;
steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" 11500 200000 \
data/$multi/tri3a ${lang_root}_nosp exp/$multi/tri2_ali exp/$multi/tri3a || exit 1;
# decode
(
gmm=tri3a
graph_dir=exp/$multi/$gmm/graph_tg
utils/mkgraph.sh ${lang_root}_nosp_fsh_sw1_tg \
exp/$multi/$gmm $graph_dir || exit 1;
for e in eval2000 rt03; do
steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
data/$e/test exp/$multi/$gmm/decode_tg_$e || exit 1;
done
)&
fi
# train tri3b (LDA+MLLT) on whole fisher + swbd (nodup)
if [ $stage -le 15 ]; then
local/make_partitions.sh --multi $multi --stage 5 || exit 1;
steps/align_si.sh --boost-silence 1.25 --nj 100 --cmd "$train_cmd" \
data/$multi/tri3a_ali ${lang_root}_nosp exp/$multi/tri3a exp/$multi/tri3a_ali || exit 1;
steps/train_lda_mllt.sh --cmd "$train_cmd" \
--splice-opts "--left-context=3 --right-context=3" 11500 400000 \
data/$multi/tri3b ${lang_root}_nosp exp/$multi/tri3a_ali exp/$multi/tri3b || exit 1;
# decode
(
gmm=tri3b
graph_dir=exp/$multi/$gmm/graph_tg
utils/mkgraph.sh ${lang_root}_nosp_fsh_sw1_tg \
exp/$multi/$gmm $graph_dir || exit 1;
for e in eval2000 rt03; do
steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
data/$e/test exp/$multi/$gmm/decode_tg_$e || exit 1;
done
)&
fi
# reestimate pron & sil-probs
dict_affix=${multi}_tri3b
if [ $stage -le 16 ]; then
gmm=tri3b
steps/get_prons.sh --cmd "$train_cmd" data/$multi/$gmm ${lang_root}_nosp exp/$multi/$gmm
utils/dict_dir_add_pronprobs.sh --max-normalize true \
${dict_root}_nosp exp/$multi/$gmm/pron_counts_nowb.txt \
exp/$multi/$gmm/sil_counts_nowb.txt exp/$multi/$gmm/pron_bigram_counts_nowb.txt ${dict_root}_${dict_affix}
utils/prepare_lang.sh ${dict_root}_${dict_affix} "<unk>" data/local/lang_${dict_affix} ${lang_root}_${dict_affix}
utils/format_lm_sri.sh --srilm-opts "$srilm_opts" \
${lang_root}_${dict_affix} data/local/lm/3gram-mincount/lm_unpruned.gz \
${dict_root}_${dict_affix}/lexicon.txt ${lang_root}_${dict_affix}_fsh_sw1_tg
# decode
(
gmm=tri3b
graph_dir=exp/$multi/$gmm/graph_tg_sp
utils/mkgraph.sh ${lang_root}_${dict_affix}_fsh_sw1_tg \
exp/$multi/$gmm $graph_dir || exit 1;
for e in eval2000 rt03; do
steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
data/$e/test exp/$multi/$gmm/decode_tg_sp_$e || exit 1;
done
)&
fi
lang=${lang_root}_${dict_affix}
if [ $stage -le 17 ]; then
# This does the actual data cleanup.
steps/cleanup/clean_and_segment_data.sh --stage $cleanup_stage --nj 100 --cmd "$train_cmd" \
data/tedlium/train $lang exp/$multi/tri3b exp/$multi/tri3b_tedlium_cleaning_work data/$multi/tedlium_cleaned/train
fi
# train tri4 on fisher + swbd + tedlium (nodup)
if [ $stage -le 18 ]; then
local/make_partitions.sh --multi $multi --stage 6 || exit 1;
steps/align_fmllr.sh --cmd "$train_cmd" --nj 100 \
data/$multi/tri3b_ali $lang \
exp/$multi/tri3b exp/$multi/tri3b_ali || exit 1;
steps/train_sat.sh --cmd "$train_cmd" 11500 800000 \
data/$multi/tri4 $lang exp/$multi/tri3b_ali exp/$multi/tri4 || exit 1;
(
gmm=tri4
graph_dir=exp/$multi/$gmm/graph_tg
utils/mkgraph.sh ${lang}_fsh_sw1_tg \
exp/$multi/$gmm $graph_dir || exit 1;
for e in eval2000 rt03; do
steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
data/$e/test exp/$multi/$gmm/decode_tg_$e || exit 1;
done
)&
fi
# train tri5a on fisher + swbd + tedlium + wsj + hub4_en (nodup)
if [ $stage -le 19 ]; then
local/make_partitions.sh --multi $multi --stage 7 || exit 1;
steps/align_fmllr.sh --cmd "$train_cmd" --nj 100 \
data/$multi/tri4_ali $lang \
exp/$multi/tri4 exp/$multi/tri4_ali || exit 1;
steps/train_sat.sh --cmd "$train_cmd" 11500 1600000 \
data/$multi/tri5a $lang exp/$multi/tri4_ali exp/$multi/tri5a || exit 1;
(
gmm=tri5a
graph_dir=exp/$multi/$gmm/graph_tg
utils/mkgraph.sh ${lang}_fsh_sw1_tg \
exp/$multi/$gmm $graph_dir || exit 1;
for e in eval2000 rt03; do
steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
data/$e/test exp/$multi/$gmm/decode_tg_$e || exit 1;
done
)&
fi
# reestimate pron & sil-probs
dict_affix=${multi}_tri5a
if [ $stage -le 20 ]; then
gmm=tri5a
steps/get_prons.sh --cmd "$train_cmd" data/$multi/$gmm ${lang_root}_nosp exp/$multi/$gmm
utils/dict_dir_add_pronprobs.sh --max-normalize true \
${dict_root}_nosp exp/$multi/$gmm/pron_counts_nowb.txt \
exp/$multi/$gmm/sil_counts_nowb.txt exp/$multi/$gmm/pron_bigram_counts_nowb.txt ${dict_root}_${dict_affix}
utils/prepare_lang.sh ${dict_root}_${dict_affix} "<unk>" data/local/lang_${dict_affix} ${lang_root}_${dict_affix}
utils/format_lm_sri.sh --srilm-opts "$srilm_opts" \
${lang_root}_${dict_affix} data/local/lm/3gram-mincount/lm_unpruned.gz \
${dict_root}_${dict_affix}/lexicon.txt ${lang_root}_${dict_affix}_fsh_sw1_tg
# re-decode after re-estimating sil & pron-probs
(
gmm=tri5a
graph_dir=exp/$multi/$gmm/graph_tg_sp
utils/mkgraph.sh ${lang_root}_${dict_affix}_fsh_sw1_tg \
exp/$multi/$gmm $graph_dir || exit 1;
for e in eval2000 rt03; do
steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
data/$e/test exp/$multi/$gmm/decode_tg_sp_$e || exit 1;
done
)&
fi
lang=${lang_root}_${dict_affix}
# train tri5b on fisher + swbd + tedlium + wsj + hub4_en + librispeeh460 (nodup)
if [ $stage -le 21 ]; then
local/make_partitions.sh --multi $multi --stage 8 || exit 1;
steps/align_fmllr.sh --cmd "$train_cmd" --nj 100 \
data/$multi/tri5a_ali $lang \
exp/$multi/tri5a exp/$multi/tri5a_ali || exit 1;
steps/train_sat.sh --cmd "$train_cmd" 11500 2000000 \
data/$multi/tri5b $lang exp/$multi/tri5a_ali exp/$multi/tri5b || exit 1;
(
gmm=tri5b
graph_dir=exp/$multi/$gmm/graph_tg
utils/mkgraph.sh ${lang}_fsh_sw1_tg \
exp/$multi/$gmm $graph_dir || exit 1;
for e in eval2000 rt03; do
steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
data/$e/test exp/$multi/$gmm/decode_tg_$e || exit 1;
done
)&
fi
# train tri6a on fisher + swbd + tedlium + wsj + hub4_en + librispeeh960 (nodup)
if [ $stage -le 22 ]; then
local/make_partitions.sh --multi $multi --stage 9 || exit 1;
steps/align_fmllr.sh --cmd "$train_cmd" --nj 100 \
data/$multi/tri5b_ali $lang \
exp/$multi/tri5b exp/$multi/tri5b_ali || exit 1;
steps/train_sat.sh --cmd "$train_cmd" 14000 2400000 \
data/$multi/tri6a $lang exp/$multi/tri5b_ali exp/$multi/tri6a || exit 1;
(
gmm=tri6a
graph_dir=exp/$multi/$gmm/graph_tg
utils/mkgraph.sh ${lang}_fsh_sw1_tg \
exp/$multi/$gmm $graph_dir || exit 1;
for e in eval2000 rt03; do
steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
data/$e/test exp/$multi/$gmm/decode_tg_$e || exit 1;
done
)&
fi