run.sh 16.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
#!/bin/bash

# Copyright 2016  Allen Guo
#           2017  Xiaohui Zhang
# Apache 2.0

. ./cmd.sh
. ./path.sh

# paths to corpora (see below for example)
ami=
fisher=
librispeech=
swbd=
tedlium2=
wsj0=
wsj1=
eval2000=
rt03=

set -e
# check for kaldi_lm
which get_word_map.pl > /dev/null
if [ $? -ne 0 ]; then
  echo "This recipe requires installation of tools/kaldi_lm. Please run extras/kaldi_lm.sh in tools/" && exit 1;
fi

# preset paths
case $(hostname -d) in
  clsp.jhu.edu)
    ami=/export/corpora4/ami/amicorpus
    fisher="/export/corpora3/LDC/LDC2004T19 /export/corpora3/LDC/LDC2005T19 \
      /export/corpora3/LDC/LDC2004S13 /export/corpora3/LDC/LDC2005S13"
    librispeech=/export/a15/vpanayotov/data
    swbd=/export/corpora3/LDC/LDC97S62
    tedlium2=/export/corpora5/TEDLIUM_release2
    wsj0=/export/corpora5/LDC/LDC93S6B
    wsj1=/export/corpora5/LDC/LDC94S13B
    eval2000="/export/corpora/LDC/LDC2002S09/hub5e_00 /export/corpora/LDC/LDC2002T43"
    rt03="/export/corpora/LDC/LDC2007S10"
    hub4_en_96="/export/corpora/LDC/LDC97T22/hub4_eng_train_trans /export/corpora/LDC/LDC97S44/data"
    hub4_en_97="/export/corpora/LDC/LDC98T28/hub4e97_trans_980217 /export/corpora/LDC/LDC98S71/97_eng_bns_hub4"
    ;;
esac

# general options
stage=1
cleanup_stage=1
multi=multi_a  # This defines the "variant" we're using; see README.md
srilm_opts="-subset -prune-lowprobs -unk -tolower -order 3"

. utils/parse_options.sh

# Prepare the basic dictionary (a combination of swbd+CMU+tedlium lexicons) in data/local/dict_combined.
# and train a G2P model using the combined lexicon
# in data/local/dict_combined
if [ $stage -le 1 ]; then
  # We prepare the basic dictionary in data/local/dict_combined.
  local/prepare_dict.sh $swbd $tedlium2
  (
   steps/dict/train_g2p_phonetisaurus.sh --stage 0 --silence-phones \
     "data/local/dict_combined/silence_phones.txt" data/local/dict_combined/lexicon.txt exp/g2p || touch exp/g2p/.error
  ) &
fi

# Prepare corpora data
if [ $stage -le 2 ]; then
  mkdir -p data/local
  # fisher
  local/fisher_data_prep.sh $fisher
  utils/fix_data_dir.sh data/fisher/train
  # swbd
  local/swbd1_data_prep.sh $swbd
  utils/fix_data_dir.sh data/swbd/train
  # librispeech
  local/librispeech_data_prep.sh $librispeech/LibriSpeech/train-clean-100 data/librispeech_100/train
  local/librispeech_data_prep.sh $librispeech/LibriSpeech/train-clean-360 data/librispeech_360/train
  local/librispeech_data_prep.sh $librispeech/LibriSpeech/train-other-500 data/librispeech_500/train
  local/librispeech_data_prep.sh $librispeech/LibriSpeech/test-clean data/librispeech/test
  # tedlium
  local/tedlium_prepare_data.sh $tedlium2
  # wsj
  local/wsj_data_prep.sh $wsj0/??-{?,??}.? $wsj1/??-{?,??}.?
  local/wsj_format_data.sh
  utils/copy_data_dir.sh --spk_prefix wsj_ --utt_prefix wsj_ data/wsj/train_si284 data/wsj/train
  rm -r data/wsj/train_si284 2>/dev/null || true
  # hub4_en
  local/hub4_en_data_prep.sh $hub4_en_96 $hub4_en_97
  # eval2000 (test)
  local/eval2000_data_prep.sh $eval2000
  utils/fix_data_dir.sh data/eval2000/test
  # rt03 (test)
  local/rt03_data_prep.sh $rt03
  utils/fix_data_dir.sh data/rt03/test
fi

# Normalize transcripts
if [ $stage -le 3 ]; then
  for f in data/*/{train,test}/text; do
    echo Normalizing $f
    cp $f $f.orig
    local/normalize_transcript.py $f.orig > $f
  done
fi

# Synthesize pronounciations for OOV words across all training transcripts and produce the final lexicon.
if [ $stage -le 4 ]; then
  wait # Waiting for train_g2p.sh to finish
  if [ -f exp/g2p/.error ]; then
     rm exp/g2p/.error || true
     echo "Fail to train the G2P model." && exit 1;
  fi
  dict_dir=data/local/dict_nosp
  mkdir -p $dict_dir
  rm $dict_dir/lexiconp.txt 2>/dev/null || true
  cp data/local/dict_combined/{extra_questions,nonsilence_phones,silence_phones,optional_silence}.txt $dict_dir

  echo 'Gathering missing words...'
  
  lexicon=data/local/dict_combined/lexicon.txt
  g2p_tmp_dir=data/local/g2p_phonetisarus
  mkdir -p $g2p_tmp_dir

  # awk command from http://stackoverflow.com/questions/2626274/print-all-but-the-first-three-columns
  cat data/*/train/text | \
    local/count_oovs.pl $lexicon | \
    awk '{if (NF > 3 ) {for(i=4; i<NF; i++) printf "%s ",$i; print $NF;}}' | \
    perl -ape 's/\s/\n/g;' | \
    sort | uniq > $g2p_tmp_dir/missing.txt
  cat $g2p_tmp_dir/missing.txt | \
    grep "^[a-z]*$"  > $g2p_tmp_dir/missing_onlywords.txt

  steps/dict/apply_g2p_phonetisaurus.sh --nbest 1 $g2p_tmp_dir/missing_onlywords.txt exp/g2p exp/g2p/oov_lex || exit 1;
  cp exp/g2p/oov_lex/lexicon.lex $g2p_tmp_dir/missing_lexicon.txt

  extended_lexicon=$dict_dir/lexicon.txt
  echo "Adding new pronunciations to get extended lexicon $extended_lexicon"
  cat <(cut -f 1,3 $g2p_tmp_dir/missing_lexicon.txt) $lexicon | sort | uniq > $extended_lexicon
fi

# We'll do multiple iterations of pron/sil-prob estimation. So the structure of
# the dict/lang dirs are designed as ${dict/lang_root}_${dict_affix}, where dict_affix
# is "nosp" or the name of the acoustic model we use to estimate pron/sil-probs.
dict_root=data/local/dict
lang_root=data/lang

# prepare (and validate) lang directory
if [ $stage -le 5 ]; then
  utils/prepare_lang.sh ${dict_root}_nosp "<unk>" data/local/tmp/lang_nosp ${lang_root}_nosp
fi

# prepare LM and test lang directory
if [ $stage -le 6 ]; then
  mkdir -p data/local/lm
  cat data/{fisher,swbd}/train/text > data/local/lm/text
  local/train_lms.sh  # creates data/local/lm/3gram-mincount/lm_unpruned.gz
  utils/format_lm_sri.sh --srilm-opts "$srilm_opts" \
    ${lang_root}_nosp data/local/lm/3gram-mincount/lm_unpruned.gz \
    ${dict_root}_nosp/lexicon.txt ${lang_root}_nosp_fsh_sw1_tg
fi

# make training features
if [ $stage -le 7 ]; then
  mfccdir=mfcc
  corpora="hub4_en fisher librispeech_100 librispeech_360 librispeech_500 swbd tedlium wsj"
  for c in $corpora; do
    (
     data=data/$c/train
     steps/make_mfcc.sh --mfcc-config conf/mfcc.conf \
       --cmd "$train_cmd" --nj 40 \
       $data exp/make_mfcc/$c/train || touch $data/.error
     steps/compute_cmvn_stats.sh \
       $data exp/make_mfcc/$c/train || touch $data/.error
    ) &
  done
  wait
  if [ -f $data/.error ]; then
     rm $data/.error || true
     echo "Fail to extract features." && exit 1;
  fi
fi

# fix and validate training data directories
if [ $stage -le 8 ]; then
  # get rid of spk2gender files because not all corpora have them
  rm data/*/train/spk2gender 2>/dev/null || true
  # create reco2channel_and_file files for wsj and librispeech
  for c in wsj librispeech_100 librispeech_360 librispeech_500; do
    awk '{print $1, $1, "A"}' data/$c/train/wav.scp > data/$c/train/reco2file_and_channel;
  done
  # apply standard fixes, then validate
  for f in data/*/train; do
    utils/fix_data_dir.sh $f
    utils/validate_data_dir.sh $f
  done
fi

# make test features
if [ $stage -le 9 ]; then
  mfccdir=mfcc
  corpora="tedlium eval2000 rt03 librispeech"
  for c in $corpora; do
    data=data/$c/test
    steps/make_mfcc.sh --mfcc-config conf/mfcc.conf \
      --cmd "$train_cmd" --nj 20 \
      $data exp/make_mfcc/$c/test || exit 1;
    steps/compute_cmvn_stats.sh \
      $data exp/make_mfcc/$c/test || exit 1;
  done
fi

# fix and validate test data directories
if [ $stage -le 10 ]; then
  for f in data/*/test; do
    utils/fix_data_dir.sh $f
    utils/validate_data_dir.sh $f
  done
fi

# train mono on swbd 10k short (nodup)
if [ $stage -le 11 ]; then
 local/make_partitions.sh --multi $multi --stage 1 || exit 1;
 steps/train_mono.sh --boost-silence 1.25 --nj 20 --cmd "$train_cmd" \
   data/$multi/mono ${lang_root}_nosp exp/$multi/mono || exit 1;
fi

# train tri1a and tri1b (first and second triphone passes) on swbd 30k (nodup)
if [ $stage -le 12 ]; then
  local/make_partitions.sh --multi $multi --stage 2 || exit 1;
  steps/align_si.sh --boost-silence 1.25 --nj 20 --cmd "$train_cmd" \
    data/$multi/mono_ali ${lang_root}_nosp exp/$multi/mono exp/$multi/mono_ali || exit 1;
  steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" 3200 30000 \
    data/$multi/tri1a ${lang_root}_nosp exp/$multi/mono_ali exp/$multi/tri1a || exit 1;

  steps/align_si.sh --boost-silence 1.25 --nj 20 --cmd "$train_cmd" \
    data/$multi/tri1a_ali ${lang_root}_nosp exp/$multi/tri1a exp/$multi/tri1a_ali || exit 1;
  steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" 3200 30000 \
    data/$multi/tri1b ${lang_root}_nosp exp/$multi/tri1a_ali exp/$multi/tri1b || exit 1;
  # decode
  (  
    gmm=tri1b
    graph_dir=exp/$multi/$gmm/graph_tg
    utils/mkgraph.sh ${lang_root}_nosp_fsh_sw1_tg \
      exp/$multi/$gmm $graph_dir || exit 1;
    for e in eval2000 rt03; do
      steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
        data/$e/test exp/$multi/$gmm/decode_tg_$e || exit 1;
    done
  )&
fi

# train tri2 (third triphone pass) on swbd 100k (nodup)
if [ $stage -le 13 ]; then
 local/make_partitions.sh --multi $multi --stage 3 || exit 1;
 steps/align_si.sh --boost-silence 1.25 --nj 50 --cmd "$train_cmd" \
   data/$multi/tri1b_ali ${lang_root}_nosp exp/$multi/tri1b exp/$multi/tri1b_ali || exit 1;
 steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" 5500 90000 \
   data/$multi/tri2 ${lang_root}_nosp exp/$multi/tri1b_ali exp/$multi/tri2 || exit 1;
fi

# train tri3a (4th triphone pass) on whole swbd
if [ $stage -le 14 ]; then
  local/make_partitions.sh --multi $multi --stage 4 || exit 1;
  steps/align_si.sh --boost-silence 1.25 --nj 100 --cmd "$train_cmd" \
    data/$multi/tri2_ali ${lang_root}_nosp exp/$multi/tri2 exp/$multi/tri2_ali || exit 1;
  steps/train_deltas.sh --boost-silence 1.25 --cmd "$train_cmd" 11500 200000 \
    data/$multi/tri3a ${lang_root}_nosp exp/$multi/tri2_ali exp/$multi/tri3a || exit 1;
  # decode
  (  
    gmm=tri3a
    graph_dir=exp/$multi/$gmm/graph_tg
    utils/mkgraph.sh ${lang_root}_nosp_fsh_sw1_tg \
      exp/$multi/$gmm $graph_dir || exit 1;
    for e in eval2000 rt03; do
      steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
        data/$e/test exp/$multi/$gmm/decode_tg_$e || exit 1;
    done
  )&
fi

# train tri3b (LDA+MLLT) on whole fisher + swbd (nodup)
if [ $stage -le 15 ]; then
  local/make_partitions.sh --multi $multi --stage 5 || exit 1;
  steps/align_si.sh --boost-silence 1.25 --nj 100 --cmd "$train_cmd" \
    data/$multi/tri3a_ali ${lang_root}_nosp exp/$multi/tri3a exp/$multi/tri3a_ali || exit 1;
  steps/train_lda_mllt.sh --cmd "$train_cmd" \
    --splice-opts "--left-context=3 --right-context=3" 11500 400000 \
    data/$multi/tri3b ${lang_root}_nosp exp/$multi/tri3a_ali exp/$multi/tri3b || exit 1;
  # decode
  (  
    gmm=tri3b
    graph_dir=exp/$multi/$gmm/graph_tg
    utils/mkgraph.sh ${lang_root}_nosp_fsh_sw1_tg \
      exp/$multi/$gmm $graph_dir || exit 1;
    for e in eval2000 rt03; do
      steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
        data/$e/test exp/$multi/$gmm/decode_tg_$e || exit 1;
    done
  )&
fi

# reestimate pron & sil-probs
dict_affix=${multi}_tri3b
if [ $stage -le 16 ]; then
  gmm=tri3b
  steps/get_prons.sh --cmd "$train_cmd" data/$multi/$gmm ${lang_root}_nosp exp/$multi/$gmm
  utils/dict_dir_add_pronprobs.sh --max-normalize true \
    ${dict_root}_nosp exp/$multi/$gmm/pron_counts_nowb.txt \
    exp/$multi/$gmm/sil_counts_nowb.txt exp/$multi/$gmm/pron_bigram_counts_nowb.txt ${dict_root}_${dict_affix}
  utils/prepare_lang.sh ${dict_root}_${dict_affix} "<unk>" data/local/lang_${dict_affix} ${lang_root}_${dict_affix}
  utils/format_lm_sri.sh --srilm-opts "$srilm_opts" \
    ${lang_root}_${dict_affix} data/local/lm/3gram-mincount/lm_unpruned.gz \
    ${dict_root}_${dict_affix}/lexicon.txt ${lang_root}_${dict_affix}_fsh_sw1_tg
  # decode
  (  
    gmm=tri3b
    graph_dir=exp/$multi/$gmm/graph_tg_sp
    utils/mkgraph.sh ${lang_root}_${dict_affix}_fsh_sw1_tg \
      exp/$multi/$gmm $graph_dir || exit 1;
    for e in eval2000 rt03; do
      steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
        data/$e/test exp/$multi/$gmm/decode_tg_sp_$e || exit 1;
    done
  )&
fi

lang=${lang_root}_${dict_affix}
if [ $stage -le 17 ]; then
  # This does the actual data cleanup.
  steps/cleanup/clean_and_segment_data.sh --stage $cleanup_stage --nj 100 --cmd "$train_cmd" \
  data/tedlium/train $lang exp/$multi/tri3b exp/$multi/tri3b_tedlium_cleaning_work data/$multi/tedlium_cleaned/train
fi

# train tri4 on fisher + swbd + tedlium (nodup)
if [ $stage -le 18 ]; then
  local/make_partitions.sh --multi $multi --stage 6 || exit 1;
  steps/align_fmllr.sh --cmd "$train_cmd" --nj 100 \
    data/$multi/tri3b_ali $lang \
    exp/$multi/tri3b exp/$multi/tri3b_ali || exit 1;
  steps/train_sat.sh --cmd "$train_cmd" 11500 800000 \
    data/$multi/tri4 $lang exp/$multi/tri3b_ali exp/$multi/tri4 || exit 1;
  (  
    gmm=tri4
    graph_dir=exp/$multi/$gmm/graph_tg
    utils/mkgraph.sh ${lang}_fsh_sw1_tg \
      exp/$multi/$gmm $graph_dir || exit 1;
    for e in eval2000 rt03; do
      steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
        data/$e/test exp/$multi/$gmm/decode_tg_$e || exit 1;
    done
  )&
fi

# train tri5a on fisher + swbd + tedlium + wsj + hub4_en (nodup)
if [ $stage -le 19 ]; then
  local/make_partitions.sh --multi $multi --stage 7 || exit 1;
  steps/align_fmllr.sh --cmd "$train_cmd" --nj 100 \
    data/$multi/tri4_ali $lang \
    exp/$multi/tri4 exp/$multi/tri4_ali || exit 1;
  steps/train_sat.sh --cmd "$train_cmd" 11500 1600000 \
    data/$multi/tri5a $lang exp/$multi/tri4_ali exp/$multi/tri5a || exit 1;
  (  
    gmm=tri5a
    graph_dir=exp/$multi/$gmm/graph_tg
    utils/mkgraph.sh ${lang}_fsh_sw1_tg \
      exp/$multi/$gmm $graph_dir || exit 1;
    for e in eval2000 rt03; do
      steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
        data/$e/test exp/$multi/$gmm/decode_tg_$e || exit 1;
    done
  )&
fi

# reestimate pron & sil-probs
dict_affix=${multi}_tri5a
if [ $stage -le 20 ]; then
  gmm=tri5a
  steps/get_prons.sh --cmd "$train_cmd" data/$multi/$gmm ${lang_root}_nosp exp/$multi/$gmm
  utils/dict_dir_add_pronprobs.sh --max-normalize true \
    ${dict_root}_nosp exp/$multi/$gmm/pron_counts_nowb.txt \
    exp/$multi/$gmm/sil_counts_nowb.txt exp/$multi/$gmm/pron_bigram_counts_nowb.txt ${dict_root}_${dict_affix}
  utils/prepare_lang.sh ${dict_root}_${dict_affix} "<unk>" data/local/lang_${dict_affix} ${lang_root}_${dict_affix}
  utils/format_lm_sri.sh --srilm-opts "$srilm_opts" \
    ${lang_root}_${dict_affix} data/local/lm/3gram-mincount/lm_unpruned.gz \
    ${dict_root}_${dict_affix}/lexicon.txt ${lang_root}_${dict_affix}_fsh_sw1_tg
  # re-decode after re-estimating sil & pron-probs
  (  
    gmm=tri5a
    graph_dir=exp/$multi/$gmm/graph_tg_sp
    utils/mkgraph.sh ${lang_root}_${dict_affix}_fsh_sw1_tg \
      exp/$multi/$gmm $graph_dir || exit 1;
    for e in eval2000 rt03; do
      steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
        data/$e/test exp/$multi/$gmm/decode_tg_sp_$e || exit 1;
    done
  )&
fi

lang=${lang_root}_${dict_affix}
# train tri5b on fisher + swbd + tedlium + wsj + hub4_en + librispeeh460 (nodup)
if [ $stage -le 21 ]; then
  local/make_partitions.sh --multi $multi --stage 8 || exit 1;
  steps/align_fmllr.sh --cmd "$train_cmd" --nj 100 \
    data/$multi/tri5a_ali $lang \
    exp/$multi/tri5a exp/$multi/tri5a_ali || exit 1;
  steps/train_sat.sh --cmd "$train_cmd" 11500 2000000 \
    data/$multi/tri5b $lang exp/$multi/tri5a_ali exp/$multi/tri5b || exit 1;
  (  
    gmm=tri5b
    graph_dir=exp/$multi/$gmm/graph_tg
    utils/mkgraph.sh ${lang}_fsh_sw1_tg \
      exp/$multi/$gmm $graph_dir || exit 1;
    for e in eval2000 rt03; do
      steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
        data/$e/test exp/$multi/$gmm/decode_tg_$e || exit 1;
    done
  )&
fi

# train tri6a on fisher + swbd + tedlium + wsj + hub4_en + librispeeh960 (nodup)
if [ $stage -le 22 ]; then
  local/make_partitions.sh --multi $multi --stage 9 || exit 1;
  steps/align_fmllr.sh --cmd "$train_cmd" --nj 100 \
    data/$multi/tri5b_ali $lang \
    exp/$multi/tri5b exp/$multi/tri5b_ali || exit 1;

  steps/train_sat.sh --cmd "$train_cmd" 14000 2400000 \
    data/$multi/tri6a $lang exp/$multi/tri5b_ali exp/$multi/tri6a || exit 1;
  (  
    gmm=tri6a
    graph_dir=exp/$multi/$gmm/graph_tg
    utils/mkgraph.sh ${lang}_fsh_sw1_tg \
      exp/$multi/$gmm $graph_dir || exit 1;
    for e in eval2000 rt03; do
      steps/decode_fmllr.sh --nj 25 --cmd "$decode_cmd" --config conf/decode.config $graph_dir \
        data/$e/test exp/$multi/$gmm/decode_tg_$e || exit 1;
    done
  )&
fi