train_rnnlm_sparse.sh
4.28 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/bash
# DEPRECATED. See local/rnnlm/run_tdnn.sh.
# version that makes use of sparse features.
# this will eventually be totally refactored and moved into steps/.
dir=exp/rnnlm_data_prep
vocab=data/vocab/words.txt
embedding_dim=600
feat_dim=$(tail -n 1 $dir/features.txt | awk '{print $1 + 1;}')
# work out the number of splits.
ns=$(rnnlm/get_num_splits.sh 1000000 data/text $dir/data_weights.txt)
vocab_size=$(tail -n 1 $vocab |awk '{print $NF + 1}')
# split the data into pieces that individual jobs will train on.
# rnnlm/split_data.sh data/text $ns
rnnlm/prepare_split_data.py --vocab-file=$vocab --data-weights-file=$dir/data_weights.txt \
--num-splits=$ns data/text $dir/text
. ./path.sh
# cat >$dir/config <<EOF
# input-node name=input dim=$embedding_dim
# component name=affine1 type=NaturalGradientAffineComponent input-dim=$embedding_dim output-dim=$embedding_dim
# component-node input=input name=affine1 component=affine1
# output-node input=affine1 name=output
# EOF
mkdir -p $dir/configs
cat >$dir/configs/network.xconfig <<EOF
input dim=$embedding_dim name=input
relu-renorm-layer name=tdnn1 dim=512 input=Append(0, IfDefined(-1))
relu-renorm-layer name=tdnn2 dim=512 input=Append(0, IfDefined(-2))
relu-renorm-layer name=tdnn3 dim=512 input=Append(0, IfDefined(-2))
output-layer name=output include-log-softmax=false dim=$embedding_dim learning-rate-factor=0.125 max-change=0.125
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
nnet3-init $dir/configs/final.config - | nnet3-copy --learning-rate=0.0001 - $dir/0.rnnlm
# we may later initialize this to identity for the first block.
rnnlm/initialize_matrix.pl --first-element 1.0 --stddev 0.001 $feat_dim $embedding_dim > $dir/embedding.0.mat
# alternative path:
rnnlm/initialize_matrix.pl --first-column 1.0 $vocab_size $embedding_dim > $dir/word_embedding.0.mat
rnnlm-train --use-gpu=no --read-rnnlm=$dir/0.rnnlm --write-rnnlm=$dir/1.rnnlm --read-embedding=$dir/embedding.0.mat \
--read-sparse-word-features=$dir/word_feats.txt \
--write-embedding=/$dir/embedding.1.mat "ark:rnnlm-get-egs --vocab-size=$vocab_size $dir/text/1.txt ark,t:- |"
# or with GPU:
rnnlm-train --rnnlm.max-param-change=0.5 --embedding.max-param-change=0.5 \
--read-sparse-word-features=$dir/word_feats.txt \
--use-gpu=yes --read-rnnlm=$dir/0.rnnlm --write-rnnlm=$dir/1.rnnlm --read-embedding=$dir/embedding.0.mat \
--write-embedding=$dir/embedding.1.mat 'ark:for n in 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; do cat exp/rnnlm_data_prep/text/*.txt; done | rnnlm-get-egs --vocab-size=10003 - ark:- |'
# and evaluate on dev ata:
rnnlm-get-word-embedding $dir/word_feats.txt $dir/embedding.1.mat $dir/word_embedding.1.mat
# get the dev-data proability
rnnlm-get-egs --vocab-size=10003 $dir/text/dev.txt ark:- | \
rnnlm-compute-prob --use-gpu=yes $dir/1.rnnlm $dir/word_embedding.1.mat ark:-
# with GPU, no sparse features.
rnnlm-train --rnnlm.max-param-change=0.5 --embedding.max-param-change=0.5 \
--use-gpu=yes --read-rnnlm=$dir/0.rnnlm --write-rnnlm=$dir/1.rnnlm --read-embedding=$dir/word_embedding.0.mat \
--write-embedding=$dir/embedding.1.mat 'ark:for n in 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; do cat exp/rnnlm_data_prep/text/*.txt; done | rnnlm-get-egs --vocab-size=10003 - ark:- |'
# just a note on the unigram entropy of PTB training set:
# awk '{for (n=1;n<=NF;n++) { count[$n]++; } count["</s>"]++; } END{ tot_count=0; tot_entropy=0.0; for(k in count) tot_count += count[k]; for (k in count) { p = count[k]*1.0/tot_count; tot_entropy += p*log(p); } print "entropy is " -tot_entropy; }' <data/text/ptb.txt
# 6.52933
# .. and entropy of bigrams:
# awk '{hist="<s>"; for (n=1;n<=NF;n++) { count[hist,$n]++; hist=$n; } count[hist,"</s>"]++; } END{ tot_count=0; tot_entropy=0.0; for(k in count) tot_count += count[k]; for (k in count) { p = count[k]*1.0/tot_count; tot_entropy += p*log(p); } print "entropy is " -tot_entropy; }' <data/text/ptb.txt
# 10.7482
# in information theory, H(X) = H(Y) = 6.52, H(X,Y) = 10.7482, so H(Y | X) = 10.7482 - 6.52 = ***4.2282***, which
# is the entropy of the next symbol given the preceding symbol. this gives a limit on the expected training
# objective given just a single word of context.