run_tdnn_5o.sh 7.1 KB
#!/bin/bash

# this script is a modified version of run_tdnn_5n.sh. It uses
# a new configs convention for chain model after kaldi 5.2.



set -e

# configs for 'chain'
stage=0
train_stage=-10
get_egs_stage=-10
xent_regularize=0.1
dir=exp/chain/tdnn_5o

# training options
num_epochs=13
initial_effective_lrate=0.005
final_effective_lrate=0.0005
max_param_change=2.0
final_layer_normalize_target=0.5
num_jobs_initial=2
num_jobs_final=4
minibatch_size=128
frames_per_eg=150
remove_egs=false
#common_egs_dir=exp/chain/tdnn_5g/egs/
common_egs_dir=
# End configuration section.
echo "$0 $@"  # Print the command line for logging

. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh

if ! cuda-compiled; then
  cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi

# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet2 setup, and you can skip them by setting "--stage 4" if you have already
# run those things.

ali_dir=exp/tri3b_ali
treedir=exp/chain/tri4_5o_tree
lang=data/lang_chain_5o

local/online/run_nnet2_common.sh --stage $stage || exit 1;

if [ $stage -le 4 ]; then
  # Get the alignments as lattices (gives the chain training more freedom).
  # use the same num-jobs as the alignments
  nj=$(cat exp/tri3b_ali/num_jobs) || exit 1;
  steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/train \
    data/lang exp/tri3b exp/tri3b_lats
  rm exp/tri3b_lats/fsts.*.gz # save space
fi

if [ $stage -le 5 ]; then
  # Create a version of the lang/ directory that has one state per phone in the
  # topo file. [note, it really has two states.. the first one is only repeated
  # once, the second one has zero or more repeats.]
  rm -rf $lang
  cp -r data/lang $lang
  silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
  nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
  # Use our special topology... note that later on may have to tune this
  # topology.
  steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi

if [ $stage -le 6 ]; then
  # Build a tree using our new topology.
  steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
    --cmd "$train_cmd" 1200 data/train $lang $ali_dir $treedir
fi

if [ $stage -le 7 ]; then
  mkdir -p $dir
  echo "$0: creating neural net configs using the xconfig parser";

  num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}')
  learning_rate_factor=$(echo "print(0.5/$xent_regularize)" | python)
  tdnn_opts="l2-regularize=0.01 dropout-proportion=0.0 dropout-per-dim-continuous=true"
  tdnnf_opts="l2-regularize=0.01 dropout-proportion=0.0 bypass-scale=0.66"
  linear_opts="l2-regularize=0.01 orthonormal-constraint=-1.0"
  prefinal_opts="l2-regularize=0.01"
  output_opts="l2-regularize=0.005"

  mkdir -p $dir/configs
  cat <<EOF > $dir/configs/network.xconfig
  input dim=50 name=ivector
  input dim=13 name=input

  # please note that it is important to have input layer with the name=input
  # as the layer immediately preceding the fixed-affine-layer to enable
  # the use of short notation for the descriptor
  fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat

  # the first splicing is moved before the lda layer, so no splicing here
  relu-batchnorm-dropout-layer name=tdnn1 $tdnn_opts dim=768
  tdnnf-layer name=tdnnf2 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=1
  tdnnf-layer name=tdnnf3 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=1
  tdnnf-layer name=tdnnf4 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=1
  tdnnf-layer name=tdnnf5 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=0
  tdnnf-layer name=tdnnf6 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
  tdnnf-layer name=tdnnf7 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
  tdnnf-layer name=tdnnf8 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
  tdnnf-layer name=tdnnf9 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
  tdnnf-layer name=tdnnf10 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
  tdnnf-layer name=tdnnf11 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
  tdnnf-layer name=tdnnf12 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
  tdnnf-layer name=tdnnf13 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
  linear-component name=prefinal-l dim=192 $linear_opts

  ## adding the layers for chain branch
  prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts small-dim=192 big-dim=768
  output-layer name=output include-log-softmax=false dim=$num_targets $output_opts

  # adding the layers for xent branch
  prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts small-dim=192 big-dim=768
  output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
EOF
  steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi

if [ $stage -le 8 ]; then
 steps/nnet3/chain/train.py --stage $train_stage \
    --cmd "$decode_cmd" \
    --feat.online-ivector-dir exp/nnet2_online/ivectors \
    --feat.cmvn-opts "--norm-means=false --norm-vars=false" \
    --chain.xent-regularize 0.1 \
    --chain.leaky-hmm-coefficient 0.1 \
    --chain.l2-regularize 0.00005 \
    --chain.apply-deriv-weights false \
    --chain.lm-opts="--num-extra-lm-states=200" \
    --egs.dir "$common_egs_dir" \
    --egs.opts "--frames-overlap-per-eg 0" \
    --egs.chunk-width $frames_per_eg \
    --trainer.num-chunk-per-minibatch $minibatch_size \
    --trainer.frames-per-iter 1000000 \
    --trainer.num-epochs $num_epochs \
    --trainer.optimization.num-jobs-initial $num_jobs_initial \
    --trainer.optimization.num-jobs-final $num_jobs_final \
    --trainer.optimization.initial-effective-lrate $initial_effective_lrate \
    --trainer.optimization.final-effective-lrate $final_effective_lrate \
    --trainer.max-param-change $max_param_change \
    --cleanup.remove-egs $remove_egs \
    --feat-dir data/train_hires \
    --tree-dir $treedir \
    --lat-dir exp/tri3b_lats \
    --dir $dir
fi

if [ $stage -le 9 ]; then
  steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 4 \
    data/test_hires exp/nnet2_online/extractor exp/nnet2_online/ivectors_test || exit 1;
fi

if [ $stage -le 10 ]; then
  # Note: it might appear that this $lang directory is mismatched, and it is as
  # far as the 'topo' is concerned, but this script doesn't read the 'topo' from
  # the lang directory.
  utils/mkgraph.sh --self-loop-scale 1.0 data/lang $dir $dir/graph
  steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
    --scoring-opts "--min-lmwt 1" \
    --nj 20 --cmd "$decode_cmd" \
    --online-ivector-dir exp/nnet2_online/ivectors_test \
    $dir/graph data/test_hires $dir/decode || exit 1;
fi

if [ $stage -le 11 ]; then
  utils/mkgraph.sh --self-loop-scale 1.0 data/lang_ug $dir $dir/graph_ug
  steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
    --nj 20 --cmd "$decode_cmd" \
    --online-ivector-dir exp/nnet2_online/ivectors_test \
    $dir/graph_ug data/test_hires $dir/decode_ug || exit 1;
fi
wait;
exit 0;