run_tdnn_5o.sh
7.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#!/bin/bash
# this script is a modified version of run_tdnn_5n.sh. It uses
# a new configs convention for chain model after kaldi 5.2.
set -e
# configs for 'chain'
stage=0
train_stage=-10
get_egs_stage=-10
xent_regularize=0.1
dir=exp/chain/tdnn_5o
# training options
num_epochs=13
initial_effective_lrate=0.005
final_effective_lrate=0.0005
max_param_change=2.0
final_layer_normalize_target=0.5
num_jobs_initial=2
num_jobs_final=4
minibatch_size=128
frames_per_eg=150
remove_egs=false
#common_egs_dir=exp/chain/tdnn_5g/egs/
common_egs_dir=
# End configuration section.
echo "$0 $@" # Print the command line for logging
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet2 setup, and you can skip them by setting "--stage 4" if you have already
# run those things.
ali_dir=exp/tri3b_ali
treedir=exp/chain/tri4_5o_tree
lang=data/lang_chain_5o
local/online/run_nnet2_common.sh --stage $stage || exit 1;
if [ $stage -le 4 ]; then
# Get the alignments as lattices (gives the chain training more freedom).
# use the same num-jobs as the alignments
nj=$(cat exp/tri3b_ali/num_jobs) || exit 1;
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/train \
data/lang exp/tri3b exp/tri3b_lats
rm exp/tri3b_lats/fsts.*.gz # save space
fi
if [ $stage -le 5 ]; then
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
rm -rf $lang
cp -r data/lang $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi
if [ $stage -le 6 ]; then
# Build a tree using our new topology.
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
--cmd "$train_cmd" 1200 data/train $lang $ali_dir $treedir
fi
if [ $stage -le 7 ]; then
mkdir -p $dir
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}')
learning_rate_factor=$(echo "print(0.5/$xent_regularize)" | python)
tdnn_opts="l2-regularize=0.01 dropout-proportion=0.0 dropout-per-dim-continuous=true"
tdnnf_opts="l2-regularize=0.01 dropout-proportion=0.0 bypass-scale=0.66"
linear_opts="l2-regularize=0.01 orthonormal-constraint=-1.0"
prefinal_opts="l2-regularize=0.01"
output_opts="l2-regularize=0.005"
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=50 name=ivector
input dim=13 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
# the first splicing is moved before the lda layer, so no splicing here
relu-batchnorm-dropout-layer name=tdnn1 $tdnn_opts dim=768
tdnnf-layer name=tdnnf2 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=1
tdnnf-layer name=tdnnf3 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=1
tdnnf-layer name=tdnnf4 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=1
tdnnf-layer name=tdnnf5 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=0
tdnnf-layer name=tdnnf6 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
tdnnf-layer name=tdnnf7 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
tdnnf-layer name=tdnnf8 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
tdnnf-layer name=tdnnf9 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
tdnnf-layer name=tdnnf10 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
tdnnf-layer name=tdnnf11 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
tdnnf-layer name=tdnnf12 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
tdnnf-layer name=tdnnf13 $tdnnf_opts dim=768 bottleneck-dim=96 time-stride=3
linear-component name=prefinal-l dim=192 $linear_opts
## adding the layers for chain branch
prefinal-layer name=prefinal-chain input=prefinal-l $prefinal_opts small-dim=192 big-dim=768
output-layer name=output include-log-softmax=false dim=$num_targets $output_opts
# adding the layers for xent branch
prefinal-layer name=prefinal-xent input=prefinal-l $prefinal_opts small-dim=192 big-dim=768
output-layer name=output-xent dim=$num_targets learning-rate-factor=$learning_rate_factor $output_opts
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 8 ]; then
steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir exp/nnet2_online/ivectors \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize 0.1 \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.00005 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=200" \
--egs.dir "$common_egs_dir" \
--egs.opts "--frames-overlap-per-eg 0" \
--egs.chunk-width $frames_per_eg \
--trainer.num-chunk-per-minibatch $minibatch_size \
--trainer.frames-per-iter 1000000 \
--trainer.num-epochs $num_epochs \
--trainer.optimization.num-jobs-initial $num_jobs_initial \
--trainer.optimization.num-jobs-final $num_jobs_final \
--trainer.optimization.initial-effective-lrate $initial_effective_lrate \
--trainer.optimization.final-effective-lrate $final_effective_lrate \
--trainer.max-param-change $max_param_change \
--cleanup.remove-egs $remove_egs \
--feat-dir data/train_hires \
--tree-dir $treedir \
--lat-dir exp/tri3b_lats \
--dir $dir
fi
if [ $stage -le 9 ]; then
steps/online/nnet2/extract_ivectors_online.sh --cmd "$train_cmd" --nj 4 \
data/test_hires exp/nnet2_online/extractor exp/nnet2_online/ivectors_test || exit 1;
fi
if [ $stage -le 10 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 data/lang $dir $dir/graph
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--scoring-opts "--min-lmwt 1" \
--nj 20 --cmd "$decode_cmd" \
--online-ivector-dir exp/nnet2_online/ivectors_test \
$dir/graph data/test_hires $dir/decode || exit 1;
fi
if [ $stage -le 11 ]; then
utils/mkgraph.sh --self-loop-scale 1.0 data/lang_ug $dir $dir/graph_ug
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--nj 20 --cmd "$decode_cmd" \
--online-ivector-dir exp/nnet2_online/ivectors_test \
$dir/graph_ug data/test_hires $dir/decode_ug || exit 1;
fi
wait;
exit 0;