run_4b_gpu.sh
3.12 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#!/bin/bash
stage=0
train_stage=-100
# This trains only unadapted (just cepstral mean normalized) features,
# and uses various combinations of VTLN warping factor and time-warping
# factor to artificially expand the amount of data.
. ./cmd.sh
. ./path.sh
! cuda-compiled && cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
parallel_opts="--gpu 1" # This is suitable for the CLSP network, you'll likely have to change it.
. utils/parse_options.sh # to parse the --stage option, if given
[ $# != 0 ] && echo "Usage: local/run_4b.sh [--stage <stage> --train-stage <train-stage>]" && exit 1;
set -e
if [ $stage -le 0 ]; then
# Create the training data.
featdir=`pwd`/mfcc/nnet4b; mkdir -p $featdir
fbank_conf=conf/fbank_40.conf
echo "--num-mel-bins=40" > $fbank_conf
steps/nnet2/get_perturbed_feats.sh --cmd "$train_cmd" \
$fbank_conf $featdir exp/perturbed_fbanks data/train data/train_perturbed_fbank &
steps/nnet2/get_perturbed_feats.sh --cmd "$train_cmd" --feature-type mfcc \
conf/mfcc.conf $featdir exp/perturbed_mfcc data/train data/train_perturbed_mfcc &
wait
fi
if [ $stage -le 1 ]; then
steps/align_fmllr.sh --nj 30 --cmd "$train_cmd" \
data/train_perturbed_mfcc data/lang exp/tri3b exp/tri3b_ali_perturbed_mfcc
fi
if [ $stage -le 2 ]; then
steps/nnet2/train_block.sh --stage "$train_stage" \
--num-jobs-nnet 4 --num-threads 1 --parallel-opts "$parallel_opts" \
--bias-stddev 0.5 --splice-width 7 --egs-opts "--feat-type raw" \
--softmax-learning-rate-factor 0.5 \
--initial-learning-rate 0.04 --final-learning-rate 0.004 \
--num-epochs-extra 10 --add-layers-period 3 --mix-up 4000 \
--cmd "$decode_cmd" --hidden-layer-dim 450 \
data/train_perturbed_fbank data/lang exp/tri3b_ali_perturbed_mfcc exp/nnet4b_gpu || exit 1
fi
if [ $stage -le 3 ]; then
# Create the testing data.
featdir=`pwd`/mfcc
mkdir -p $featdir
fbank_conf=conf/fbank_40.conf
echo "--num-mel-bins=40" > $fbank_conf
for x in test_mar87 test_oct87 test_feb89 test_oct89 test_feb91 test_sep92 train; do
mkdir -p data/${x}_fbank
cp data/$x/* data/${x}_fbank || true
steps/make_fbank.sh --fbank-config "$fbank_conf" --nj 8 \
--cmd "run.pl" data/${x}_fbank exp/make_fbank/$x $featdir || exit 1;
steps/compute_cmvn_stats.sh data/${x}_fbank exp/make_fbank/$x $featdir || exit 1;
done
utils/combine_data.sh data/test_fbank data/test_{mar87,oct87,feb89,oct89,feb91,sep92}_fbank
steps/compute_cmvn_stats.sh data/test_fbank exp/make_fbank/test $featdir
fi
if [ $stage -le 4 ]; then
steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 --feat-type raw \
exp/tri3b/graph data/test_fbank exp/nnet4b_gpu/decode
steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 --feat-type raw \
exp/tri3b/graph_ug data/test_fbank exp/nnet4b_gpu/decode_ug
fi