run_5c.sh 1.95 KB
#!/bin/bash

# This is neural net training on top of adapted 40-dimensional features.
# This version of the script uses GPUs.  We distinguish it by putting "_gpu"
# at the end of the directory name.
#
# Since we're using one quarter the number of jobs (num-jobs-nnet) as the
# run_4c.sh script, we halve the learning rate (generally speaking, splitting
# the difference like this is probably a good idea.)


stage=0
train_stage=-100
. ./cmd.sh || exit 1;
. utils/parse_options.sh || exit 1;

# We increase the beam relative to the defaults; this is just for this RM setup,
# where the default beams will likely generate very thin lattices.  Note: the
# transform-dir is important to specify, since this system is on top of fMLLR
# features.

nj=8

if [ $stage -le 0 ]; then
  steps/nnet2/make_denlats.sh --cmd "$decode_cmd --mem 1G" \
    --nj $nj --sub-split 20 --num-threads 6 --parallel-opts "--num-threads 6" \
    --beam 20.0 --lattice-beam 10.0 \
    --transform-dir exp/tri3b_ali \
    data/train data/lang exp/nnet4c exp/nnet4c_denlats
fi

if [ $stage -le 1 ]; then
  steps/nnet2/align.sh  --cmd "$decode_cmd --mem 1G" \
    --transform-dir exp/tri3b_ali \
    --nj $nj data/train data/lang exp/nnet4c exp/nnet4c_ali
fi

if [ $stage -le 2 ]; then
  steps/nnet2/train_discriminative.sh --cmd "$decode_cmd" \
    --stage $train_stage \
    --transform-dir exp/tri3b_ali \
    --num-jobs-nnet 2 data/train data/lang \
    exp/nnet4c_ali exp/nnet4c_denlats exp/nnet4c/final.mdl exp/nnet5c_mpe
fi

if [ $stage -le 3 ]; then
  for epoch in 1 2 3 4; do
    steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 --iter epoch$epoch \
      --transform-dir exp/tri3b/decode \
      exp/tri3b/graph data/test exp/nnet5c_mpe/decode_epoch$epoch  &

    steps/nnet2/decode.sh --config conf/decode.config --cmd "$decode_cmd" --nj 20 --iter epoch$epoch \
      --transform-dir exp/tri3b/decode_ug \
      exp/tri3b/graph_ug data/test exp/nnet5c_mpe/decode_ug_epoch$epoch &
  done
fi