run.sh
14.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#!/bin/bash
# Copyright 2013 Daniel Povey
# 2014-2016 David Snyder
# Apache 2.0.
#
# See README.txt for more info on data required.
# Results (EERs) are inline in comments below.
# This example script is still a bit of a mess, and needs to be
# cleaned up, but it shows you all the basic ingredients.
. ./cmd.sh
. ./path.sh
set -e
mfccdir=`pwd`/mfcc
vaddir=`pwd`/mfcc
local/make_fisher.sh /export/corpora3/LDC/{LDC2004S13,LDC2004T19} data/fisher1
#Processed 4948 utterances; 902 had missing wav data. (note: we should figure
#out why so much data goes missing.)
local/make_fisher.sh /export/corpora3/LDC/{LDC2005S13,LDC2005T19} data/fisher2
#Processed 5848 utterances; 1 had missing wav data.
local/make_sre_2005_test.pl /export/corpora5/LDC/LDC2011S04 data
local/make_sre_2004_test.pl \
/export/corpora5/LDC/LDC2006S44/r93_5_1/sp04-05/test data/sre_2004_1
local/make_sre_2004_test.pl \
/export/corpora5/LDC/LDC2006S44/r93_6_1/sp04-06/test data/sre_2004_2
local/make_sre_2008_train.pl /export/corpora5/LDC/LDC2011S05 data
local/make_sre_2008_test.sh /export/corpora5/LDC/LDC2011S08 data
local/make_sre_2006_train.pl /export/corpora5/LDC/LDC2011S09 data
local/make_sre_2005_train.pl /export/corpora5/LDC/LDC2011S01 data
local/make_swbd_cellular1.pl /export/corpora5/LDC/LDC2001S13 \
data/swbd_cellular1_train
local/make_swbd_cellular2.pl /export/corpora5/LDC/LDC2004S07 \
data/swbd_cellular2_train
utils/combine_data.sh data/train data/fisher1 data/fisher2 \
data/swbd_cellular1_train data/swbd_cellular2_train \
data/sre05_train_3conv4w_female data/sre05_train_8conv4w_female \
data/sre06_train_3conv4w_female data/sre06_train_8conv4w_female \
data/sre05_train_3conv4w_male data/sre05_train_8conv4w_male \
data/sre06_train_3conv4w_male data/sre06_train_8conv4w_male \
data/sre_2004_1/ data/sre_2004_2/ data/sre05_test
mfccdir=`pwd`/mfcc
vaddir=`pwd`/mfcc
set -e
steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 40 --cmd "$train_cmd" \
data/train exp/make_mfcc $mfccdir
steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 40 --cmd "$train_cmd" \
data/sre08_train_short2_female exp/make_mfcc $mfccdir
steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 40 --cmd "$train_cmd" \
data/sre08_train_short2_male exp/make_mfcc $mfccdir
steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 40 --cmd "$train_cmd" \
data/sre08_test_short3_female exp/make_mfcc $mfccdir
steps/make_mfcc.sh --mfcc-config conf/mfcc.conf --nj 40 --cmd "$train_cmd" \
data/sre08_test_short3_male exp/make_mfcc $mfccdir
sid/compute_vad_decision.sh --nj 4 --cmd "$train_cmd" \
data/train exp/make_vad $vaddir
sid/compute_vad_decision.sh --nj 4 --cmd "$train_cmd" \
data/sre08_train_short2_female exp/make_vad $vaddir
sid/compute_vad_decision.sh --nj 4 --cmd "$train_cmd" \
data/sre08_train_short2_male exp/make_vad $vaddir
sid/compute_vad_decision.sh --nj 4 --cmd "$train_cmd" \
data/sre08_test_short3_female exp/make_vad $vaddir
sid/compute_vad_decision.sh --nj 4 --cmd "$train_cmd" \
data/sre08_test_short3_male exp/make_vad $vaddir
# Note: to see the proportion of voiced frames you can do,
# grep Prop exp/make_vad/vad_*.1.log
# Get male and female subsets of training data.
grep -w m data/train/spk2gender | awk '{print $1}' > foo;
utils/subset_data_dir.sh --spk-list foo data/train data/train_male
grep -w f data/train/spk2gender | awk '{print $1}' > foo;
utils/subset_data_dir.sh --spk-list foo data/train data/train_female
rm foo
# Get smaller subsets of training data for faster training.
utils/subset_data_dir.sh data/train 4000 data/train_4k
utils/subset_data_dir.sh data/train 8000 data/train_8k
utils/subset_data_dir.sh data/train_male 8000 data/train_male_8k
utils/subset_data_dir.sh data/train_female 8000 data/train_female_8k
# The recipe currently uses delta-window=3 and delta-order=2. However
# the accuracy is almost as good using delta-window=4 and delta-order=1
# and could be faster due to lower dimensional features. Alternative
# delta options (e.g., --delta-window 4 --delta-order 1) can be provided to
# sid/train_diag_ubm.sh. The options will be propagated to the other scripts.
sid/train_diag_ubm.sh --nj 30 --cmd "$train_cmd" data/train_4k 2048 \
exp/diag_ubm_2048
sid/train_full_ubm.sh --nj 30 --cmd "$train_cmd" data/train_8k \
exp/diag_ubm_2048 exp/full_ubm_2048
# Get male and female versions of the UBM in one pass; make sure not to remove
# any Gaussians due to low counts (so they stay matched). This will be
# more convenient for gender-id.
sid/train_full_ubm.sh --nj 30 --remove-low-count-gaussians false \
--num-iters 1 --cmd "$train_cmd" \
data/train_male_8k exp/full_ubm_2048 exp/full_ubm_2048_male &
sid/train_full_ubm.sh --nj 30 --remove-low-count-gaussians false \
--num-iters 1 --cmd "$train_cmd" \
data/train_female_8k exp/full_ubm_2048 exp/full_ubm_2048_female &
wait
# Train the iVector extractor for male speakers.
sid/train_ivector_extractor.sh --cmd "$train_cmd --mem 35G" \
--num-iters 5 exp/full_ubm_2048_male/final.ubm data/train_male \
exp/extractor_2048_male
# The same for female speakers.
sid/train_ivector_extractor.sh --cmd "$train_cmd --mem 35G" \
--num-iters 5 exp/full_ubm_2048_female/final.ubm data/train_female \
exp/extractor_2048_female
# The script below demonstrates the gender-id script. We don't really use
# it for anything here, because the SRE 2008 data is already split up by
# gender and gender identification is not required for the eval.
# It prints out the error rate based on the info in the spk2gender file;
# see exp/gender_id_fisher/error_rate where it is also printed.
sid/gender_id.sh --cmd "$train_cmd" --nj 150 exp/full_ubm_2048{,_male,_female} \
data/train exp/gender_id_train
# Gender-id error rate is 3.41%
# Extract the iVectors for the training data.
sid/extract_ivectors.sh --cmd "$train_cmd --mem 6G" --nj 50 \
exp/extractor_2048_male data/train_male exp/ivectors_train_male
sid/extract_ivectors.sh --cmd "$train_cmd --mem 6G" --nj 50 \
exp/extractor_2048_female data/train_female exp/ivectors_train_female
# .. and for the SRE08 training and test data. (We focus on the main
# evaluation condition, the only required one in that eval, which is
# the short2-short3 eval.)
sid/extract_ivectors.sh --cmd "$train_cmd --mem 6G" --nj 50 \
exp/extractor_2048_female data/sre08_train_short2_female \
exp/ivectors_sre08_train_short2_female
sid/extract_ivectors.sh --cmd "$train_cmd --mem 6G" --nj 50 \
exp/extractor_2048_male data/sre08_train_short2_male \
exp/ivectors_sre08_train_short2_male
sid/extract_ivectors.sh --cmd "$train_cmd --mem 6G" --nj 50 \
exp/extractor_2048_female data/sre08_test_short3_female \
exp/ivectors_sre08_test_short3_female
sid/extract_ivectors.sh --cmd "$train_cmd --mem 6G" --nj 50 \
exp/extractor_2048_male data/sre08_test_short3_male \
exp/ivectors_sre08_test_short3_male
### Demonstrate simple cosine-distance scoring:
trials=data/sre08_trials/short2-short3-female.trials
# Note: speaker-level i-vectors have already been length-normalized
# by sid/extract_ivectors.sh, but the utterance-level test i-vectors
# have not.
cat $trials | awk '{print $1, $2}' | \
ivector-compute-dot-products - \
scp:exp/ivectors_sre08_train_short2_female/spk_ivector.scp \
'ark:ivector-normalize-length scp:exp/ivectors_sre08_test_short3_female/ivector.scp ark:- |' \
foo
local/score_sre08.sh $trials foo
# Results for Female:
# Scoring against data/sre08_trials/short2-short3-female.trials
# Condition: 0 1 2 3 4 5 6 7 8
# EER: 12.70 20.09 4.78 19.08 16.37 15.87 10.42 7.10 7.89
trials=data/sre08_trials/short2-short3-male.trials
cat $trials | awk '{print $1, $2}' | \
ivector-compute-dot-products - \
scp:exp/ivectors_sre08_train_short2_male/spk_ivector.scp \
'ark:ivector-normalize-length scp:exp/ivectors_sre08_test_short3_male/ivector.scp ark:- |' \
foo
local/score_sre08.sh $trials foo
# Results for Male:
# Scoring against data/sre08_trials/short2-short3-male.trials
# Condition: 0 1 2 3 4 5 6 7 8
# EER: 11.10 18.55 5.24 18.03 14.35 13.44 8.47 5.92 4.82
# The following shows a more direct way to get the scores.
# condition=6
# awk '{print $3}' foo | paste - $trials | awk -v c=$condition '{n=4+c; \\
# if ($n == "Y") print $1, $4}' | \
# compute-eer -
# LOG (compute-eer:main():compute-eer.cc:136) Equal error rate is 11.10%,
# at threshold 55.9827
# Note: to see how you can plot the DET curve, look at
# local/det_curve_example.sh
### Demonstrate what happens if we reduce the dimension with LDA
ivector-compute-lda --dim=150 --total-covariance-factor=0.1 \
'ark:ivector-normalize-length scp:exp/ivectors_train_female/ivector.scp ark:- |' \
ark:data/train_female/utt2spk \
exp/ivectors_train_female/transform.mat
trials=data/sre08_trials/short2-short3-female.trials
cat $trials | awk '{print $1, $2}' | \
ivector-compute-dot-products - \
'ark:ivector-transform exp/ivectors_train_female/transform.mat scp:exp/ivectors_sre08_train_short2_female/spk_ivector.scp ark:- | ivector-normalize-length ark:- ark:- |' \
'ark:ivector-normalize-length scp:exp/ivectors_sre08_test_short3_female/ivector.scp ark:- | ivector-transform exp/ivectors_train_female/transform.mat ark:- ark:- | ivector-normalize-length ark:- ark:- |' \
foo
local/score_sre08.sh $trials foo
# Results for Female:
# Scoring against data/sre08_trials/short2-short3-female.trials
# Condition: 0 1 2 3 4 5 6 7 8
# EER: 7.96 9.82 1.49 9.44 10.51 10.70 8.81 5.83 7.11
ivector-compute-lda --dim=150 --total-covariance-factor=0.1 \
'ark:ivector-normalize-length scp:exp/ivectors_train_male/ivector.scp ark:- |' \
ark:data/train_male/utt2spk \
exp/ivectors_train_male/transform.mat
trials=data/sre08_trials/short2-short3-male.trials
cat $trials | awk '{print $1, $2}' | \
ivector-compute-dot-products - \
'ark:ivector-transform exp/ivectors_train_male/transform.mat scp:exp/ivectors_sre08_train_short2_male/spk_ivector.scp ark:- | ivector-normalize-length ark:- ark:- |' \
'ark:ivector-normalize-length scp:exp/ivectors_sre08_test_short3_male/ivector.scp ark:- | ivector-transform exp/ivectors_train_male/transform.mat ark:- ark:- | ivector-normalize-length ark:- ark:- |' \
foo
local/score_sre08.sh $trials foo
# Results for Male:
# Scoring against data/sre08_trials/short2-short3-male.trials
# Condition: 0 1 2 3 4 5 6 7 8
# EER: 6.20 8.30 1.21 8.10 8.43 7.03 7.32 5.70 3.51
### Demonstrate PLDA scoring:
## Note: below, the ivector-subtract-global-mean step doesn't appear to affect
## the EER, although it does shift the threshold.
trials=data/sre08_trials/short2-short3-female.trials
ivector-compute-plda ark:data/train_female/spk2utt \
'ark:ivector-normalize-length scp:exp/ivectors_train_female/ivector.scp ark:- |' \
exp/ivectors_train_female/plda 2>exp/ivectors_train_female/log/plda.log
ivector-plda-scoring --simple-length-normalization=true --num-utts=ark:exp/ivectors_sre08_train_short2_female/num_utts.ark \
"ivector-copy-plda --smoothing=0.0 exp/ivectors_train_female/plda - |" \
"ark:ivector-subtract-global-mean scp:exp/ivectors_sre08_train_short2_female/spk_ivector.scp ark:- |" \
"ark:ivector-normalize-length scp:exp/ivectors_sre08_test_short3_female/ivector.scp ark:- | ivector-subtract-global-mean ark:- ark:- |" \
"cat '$trials' | awk '{print \$1, \$2}' |" foo
local/score_sre08.sh $trials foo
# Result for Female is below:
# Scoring against data/sre08_trials/short2-short3-female.trials
# Condition: 0 1 2 3 4 5 6 7 8
# EER: 6.44 9.76 1.49 9.76 7.66 7.21 6.87 4.06 4.74
trials=data/sre08_trials/short2-short3-male.trials
ivector-compute-plda ark:data/train_male/spk2utt \
'ark:ivector-normalize-length scp:exp/ivectors_train_male/ivector.scp ark:- |' \
exp/ivectors_train_male/plda 2>exp/ivectors_train_male/log/plda.log
ivector-plda-scoring --simple-length-normalization=true --num-utts=ark:exp/ivectors_sre08_train_short2_male/num_utts.ark \
"ivector-copy-plda --smoothing=0.0 exp/ivectors_train_male/plda - |" \
"ark:ivector-subtract-global-mean scp:exp/ivectors_sre08_train_short2_male/spk_ivector.scp ark:- |" \
"ark:ivector-normalize-length scp:exp/ivectors_sre08_test_short3_male/ivector.scp ark:- | ivector-subtract-global-mean ark:- ark:- |" \
"cat '$trials' | awk '{print \$1, \$2}' |" foo; local/score_sre08.sh $trials foo
# Result for Male is below:
# Scoring against data/sre08_trials/short2-short3-male.trials
# Condition: 0 1 2 3 4 5 6 7 8
# EER: 4.68 7.41 1.21 7.48 5.70 4.69 5.61 3.19 2.19
### Demonstrate PLDA scoring after adapting the out-of-domain PLDA model with in-domain training data:
# first, female.
trials=data/sre08_trials/short2-short3-female.trials
cat exp/ivectors_sre08_train_short2_female/spk_ivector.scp exp/ivectors_sre08_test_short3_female/ivector.scp > female.scp
ivector-plda-scoring --simple-length-normalization=true --num-utts=ark:exp/ivectors_sre08_train_short2_female/num_utts.ark \
"ivector-adapt-plda $adapt_opts exp/ivectors_train_female/plda scp:female.scp -|" \
scp:exp/ivectors_sre08_train_short2_female/spk_ivector.scp \
"ark:ivector-normalize-length scp:exp/ivectors_sre08_test_short3_female/ivector.scp ark:- |" \
"cat '$trials' | awk '{print \$1, \$2}' |" foo; local/score_sre08.sh $trials foo
# Results:
# Condition: 0 1 2 3 4 5 6 7 8
# EER: 5.45 6.73 1.19 6.79 7.06 6.61 6.32 4.18 4.74
# Baseline (repeated from above):
# Condition: 0 1 2 3 4 5 6 7 8
# EER: 6.44 9.76 1.49 9.76 7.66 7.21 6.87 4.06 4.74
# next, male.
trials=data/sre08_trials/short2-short3-male.trials
cat exp/ivectors_sre08_train_short2_male/spk_ivector.scp exp/ivectors_sre08_test_short3_male/ivector.scp > male.scp
ivector-plda-scoring --simple-length-normalization=true --num-utts=ark:exp/ivectors_sre08_train_short2_male/num_utts.ark \
"ivector-adapt-plda $adapt_opts exp/ivectors_train_male/plda scp:male.scp -|" \
scp:exp/ivectors_sre08_train_short2_male/spk_ivector.scp \
"ark:ivector-normalize-length scp:exp/ivectors_sre08_test_short3_male/ivector.scp ark:- |" \
"cat '$trials' | awk '{print \$1, \$2}' |" foo; local/score_sre08.sh $trials foo
# Results:
# Condition: 0 1 2 3 4 5 6 7 8
# EER: 4.03 4.71 0.81 4.73 5.01 4.84 5.61 3.87 2.63
# Baseline is as follows, repeated from above. Focus on condition 0 (= all).
# Condition: 0 1 2 3 4 5 6 7 8
# EER: 4.68 7.41 1.21 7.48 5.70 4.69 5.61 3.19 2.19