RESULTS
10.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Results based on the Tedlium Release 2 Paper using the original LM given by the Lium Team
# PAPER Results: 10.1 / 11.1
# http://www.lrec-conf.org/proceedings/lrec2014/pdf/1104_Paper.pdf
# steps/info/gmm_dir_info.pl exp/mono exp/tri{1,2,3,3_cleaned}
# exp/mono: nj=20 align prob=-96.77 over 4.65h [retry=1.1%, fail=0.1%] states=127 gauss=1001
# exp/tri1: nj=35 align prob=-96.06 over 210.65h [retry=5.0%, fail=0.3%] states=1986 gauss=30087 tree-impr=3.84
# exp/tri2: nj=35 align prob=-50.05 over 210.21h [retry=6.1%, fail=0.5%] states=3342 gauss=50121 tree-impr=4.81 lda-sum=18.73 mllt:impr,logdet=0.93,1.51
# exp/tri3: nj=35 align prob=-49.01 over 210.04h [retry=4.4%, fail=0.5%] states=4177 gauss=100136 fmllr-impr=2.98 over 172.09h tree-impr=7.26
# exp/tri3_cleaned: nj=100 align prob=-49.05 over 202.62h [retry=1.5%, fail=0.0%] states=4186 gauss=100093 fmllr-impr=0.46 over 171.37h tree-impr=7.81
# steps/info/nnet3_dir_info.pl exp/nnet3{,_cleaned}/tdnn_sp
# exp/nnet3/tdnn_sp: num-iters=250 nj=2..12 num-params=11.0M dim=40+100->4177 combine=-1.06->-1.05 loglike:train/valid[165,249,final]=(-1.16,-1.08,-1.08/-1.29,-1.28,-1.27) accuracy:train/valid[165,249,final]=(0.69,0.70,0.70/0.65,0.66,0.66)
# exp/nnet3_cleaned/tdnn_sp: num-iters=240 nj=2..12 num-params=11.0M dim=40+100->4186 combine=-0.97->-0.96 loglike:train/valid[159,239,final]=(-1.06,-0.98,-0.98/-1.19,-1.16,-1.16) accuracy:train/valid[159,239,final]=(0.70,0.72,0.72/0.66,0.67,0.68)
# steps/info/chain_dir_info.pl exp/chain{,_cleaned}/tdnn_sp_bi
# exp/chain/tdnn_sp_bi: num-iters=264 nj=2..12 num-params=7.0M dim=40+100->3615 combine=-0.11->-inf xent:train/valid[175,263,final]=(-1.42,-1.35,-1.35/-1.48,-1.44,-1.44) logprob:train/valid[175,263,final]=(-0.10,-0.09,-0.09/-0.11,-0.12,-0.12)
# exp/chain_cleaned/tdnn_sp_bi: num-iters=253 nj=2..12 num-params=7.0M dim=40+100->3589 combine=-0.10->-0.10 xent:train/valid[167,252,final]=(-1.37,-1.30,-1.30/-1.43,-1.38,-1.38) logprob:train/valid[167,252,final]=(-0.10,-0.09,-0.09/-0.11,-0.11,-0.10)
######### tri1 results ########
for d in exp/tri1/decode_*; do grep Sum $d/*ore*/*ys | utils/best_wer.sh ; done
# small LM
%WER 27.8 | 507 17783 | 75.7 17.5 6.8 3.4 27.8 96.6 | 0.071 | exp/tri1/decode_nosp_dev/score_10_0.0/ctm.filt.filt.sys
%WER 27.3 | 1155 27500 | 75.3 18.4 6.3 2.7 27.3 93.0 | 0.119 | exp/tri1/decode_nosp_test/score_11_0.0/ctm.filt.filt.sys
# big LM
%WER 26.3 | 507 17783 | 76.8 16.1 7.1 3.1 26.3 95.9 | 0.080 | exp/tri1/decode_nosp_dev_rescore/score_11_0.0/ctm.filt.filt.sys
%WER 26.2 | 1155 27500 | 76.6 17.3 6.1 2.8 26.2 92.6 | 0.081 | exp/tri1/decode_nosp_test_rescore/score_11_0.0/ctm.filt.filt.sys
####### tri2 results ##########
#for d in exp/tri2/decode_*; do grep Sum $d/score*/*ys | utils/best_wer.sh ; done
# small LM
%WER 23.6 | 507 17783 | 79.6 14.8 5.6 3.2 23.6 95.1 | 0.024 | exp/tri2/decode_nosp_dev/score_12_0.0/ctm.filt.filt.sys
%WER 23.2 | 1155 27500 | 79.5 15.5 5.0 2.7 23.2 91.1 | 0.070 | exp/tri2/decode_nosp_test/score_12_0.0/ctm.filt.filt.sys
# big LM
%WER 22.3 | 507 17783 | 80.7 13.5 5.8 3.0 22.3 93.7 | -0.002 | exp/tri2/decode_nosp_dev_rescore/score_13_0.0/ctm.filt.filt.sys
%WER 21.9 | 1155 27500 | 80.7 14.6 4.7 2.6 21.9 90.2 | 0.026 | exp/tri2/decode_nosp_test_rescore/score_12_0.0/ctm.filt.filt.sys
# small LM with silence and pronunciation probs.
%WER 22.5 | 507 17783 | 80.5 14.0 5.5 3.1 22.5 94.7 | 0.092 | exp/tri2/decode_dev/score_15_0.0/ctm.filt.filt.sys
%WER 22.1 | 1155 27500 | 80.7 14.9 4.3 2.8 22.1 90.6 | 0.089 | exp/tri2/decode_test/score_13_0.0/ctm.filt.filt.sys
# big LM with silence and pronunciation probs.
%WER 21.3 | 507 17783 | 81.8 13.1 5.1 3.1 21.3 93.7 | 0.038 | exp/tri2/decode_dev_rescore/score_14_0.0/ctm.filt.filt.sys
%WER 20.9 | 1155 27500 | 81.9 14.0 4.1 2.8 20.9 90.5 | 0.046 | exp/tri2/decode_test_rescore/score_13_0.0/ctm.filt.filt.sys
####### tri3 results ##########
# small LM
%WER 18.7 | 507 17783 | 83.9 11.4 4.7 2.6 18.7 92.3 | -0.006 | exp/tri3/decode_dev/score_17_0.0/ctm.filt.filt.sys
%WER 17.6 | 1155 27500 | 84.7 11.6 3.7 2.4 17.6 87.2 | 0.013 | exp/tri3/decode_test/score_15_0.0/ctm.filt.filt.sys
# big LM
%WER 17.6 | 507 17783 | 85.0 10.5 4.4 2.6 17.6 90.5 | -0.030 | exp/tri3/decode_dev_rescore/score_16_0.0/ctm.filt.filt.sys
%WER 16.7 | 1155 27500 | 85.7 10.9 3.4 2.4 16.7 86.4 | -0.044 | exp/tri3/decode_test_rescore/score_14_0.0/ctm.filt.filt.sys
for d in exp/tri3_cleaned/decode_*; do grep Sum $d/score*/*ys | utils/best_wer.sh ; done
# tri3 after cleaning, small LM.
#
%WER 19.0 | 507 17783 | 83.9 11.4 4.7 2.9 19.0 92.1 | -0.054 | exp/tri3_cleaned/decode_dev/score_13_0.5/ctm.filt.filt.sys
%WER 17.6 | 1155 27500 | 84.8 11.7 3.5 2.4 17.6 87.6 | 0.001 | exp/tri3_cleaned/decode_test/score_15_0.0/ctm.filt.filt.sys
# tri3 after cleaning, large LM.
%WER 17.9 | 507 17783 | 85.1 10.5 4.4 3.0 17.9 90.9 | -0.055 | exp/tri3_cleaned/decode_dev_rescore/score_15_0.0/ctm.filt.filt.sys
%WER 16.6 | 1155 27500 | 85.8 10.9 3.4 2.4 16.6 86.4 | -0.058 | exp/tri3_cleaned/decode_test_rescore/score_15_0.0/ctm.filt.filt.sys
########## nnet3+chain systems
#
# chain+TDNN, small LM
%WER 9.7 | 507 17783 | 91.7 5.8 2.5 1.4 9.7 78.7 | 0.097 | exp/chain_cleaned/tdnn_sp_bi/decode_dev/score_10_0.0/ctm.filt.filt.sys
%WER 9.5 | 1155 27500 | 91.7 5.8 2.5 1.2 9.5 72.5 | 0.079 | exp/chain_cleaned/tdnn_sp_bi/decode_test/score_10_0.0/ctm.filt.filt.sys
# chain+TDNN, large LM
%WER 9.0 | 507 17783 | 92.3 5.3 2.4 1.3 9.0 76.7 | 0.067 | exp/chain_cleaned/tdnn_sp_bi/decode_dev_rescore/score_10_0.0/ctm.filt.filt.sys
%WER 9.0 | 1155 27500 | 92.2 5.3 2.5 1.2 9.0 71.3 | 0.064 | exp/chain_cleaned/tdnn_sp_bi/decode_test_rescore/score_10_0.0/ctm.filt.filt.sys
# chain+TDNN systems ran without cleanup, using the command:
# local/chain/run_tdnn.sh --train-set train --gmm tri3 --nnet3-affix ""
# for d in exp/chain/tdnn_sp_bi/decode_*; do grep Sum $d/*/*ys | utils/best_wer.sh; done
# This is about 0.1 (dev) / 0.4 (test) % worse than the corresponding results with cleanup.
%WER 9.8 | 507 17783 | 91.6 6.0 2.4 1.5 9.8 80.1 | -0.038 | exp/chain/tdnn_sp_bi/decode_dev/score_8_0.0/ctm.filt.filt.sys
%WER 9.9 | 1155 27500 | 91.4 5.7 2.9 1.3 9.9 74.9 | 0.083 | exp/chain/tdnn_sp_bi/decode_test/score_9_0.0/ctm.filt.filt.sys
%WER 9.1 | 507 17783 | 92.3 5.5 2.3 1.4 9.1 77.5 | 0.011 | exp/chain/tdnn_sp_bi/decode_dev_rescore/score_8_0.0/ctm.filt.filt.sys
%WER 9.4 | 1155 27500 | 91.9 5.6 2.5 1.4 9.4 72.7 | 0.018 | exp/chain/tdnn_sp_bi/decode_test_rescore/score_8_0.0/ctm.filt.filt.sys
####################################################################################################################
For the record, results with unpruned LM:
%WER 8.2 | 507 17783 | 92.8 4.5 2.6 1.1 8.2 70.8 | -0.036 | exp/chain/tdnn_sp_bi/decode_dev_1848_rescore/score_9_0.0/ctm.filt.filt.sys
%WER 9.3 | 1155 27500 | 91.8 5.1 3.0 1.2 9.3 71.7 | -0.008 | exp/chain/tdnn_sp_bi/decode_test_1848_rescore/score_9_0.0/ctm.filt.filt.sys
#####################################################################################################################
# BELOW FOR REFERENCE, old results with the Cantab LM -- including Nnet3 results tdnn + blstm
#####################################################################################################################
####### nnet3 results #####
# tdnn, small LM
for x in exp/nnet3_cleaned/tdnn_sp/decode_*; do grep Sum $x/*ore*/*ys | utils/best_wer.sh; done
%WER 12.5 | 507 17783 | 89.6 7.4 2.9 2.2 12.5 83.6 | -0.118 | exp/nnet3_cleaned/tdnn_sp/decode_dev/score_10_0.0/ctm.filt.filt.sys
%WER 11.4 | 1155 27500 | 90.0 7.2 2.8 1.4 11.4 78.1 | -0.056 | exp/nnet3_cleaned/tdnn_sp/decode_test/score_11_0.0/ctm.filt.filt.sys
# tdnn, large LM
%WER 11.9 | 507 17783 | 90.0 7.0 3.0 1.9 11.9 81.9 | -0.072 | exp/nnet3_cleaned/tdnn_sp/decode_dev_rescore/score_11_0.0/ctm.filt.filt.sys
%WER 10.8 | 1155 27500 | 90.6 6.7 2.7 1.4 10.8 76.6 | -0.101 | exp/nnet3_cleaned/tdnn_sp/decode_test_rescore/score_11_0.0/ctm.filt.filt.sys
# BLSTM small LM
# The results are with ClipGradientComponent and without deriv_time fix, so it may not reflect the latest changes
# for x in exp/nnet3_cleaned/lstm_bidirectional_sp/decode_*; do grep Sum $x/*ore*/*ys | utils/best_wer.sh; done
%WER 11.1 | 507 17783 | 90.5 6.8 2.7 1.6 11.1 80.7 | -0.251 | exp/nnet3_cleaned/lstm_bidirectional_sp/decode_dev/score_10_0.0/ctm.filt.filt.sys
%WER 10.2 | 1155 27500 | 91.0 6.4 2.6 1.2 10.2 75.5 | -0.278 | exp/nnet3_cleaned/lstm_bidirectional_sp/decode_test/score_10_0.0/ctm.filt.filt.sys
# BLSTM large LM
%WER 10.6 | 507 17783 | 91.0 6.5 2.5 1.6 10.6 79.3 | -0.275 | exp/nnet3_cleaned/lstm_bidirectional_sp/decode_dev_rescore/score_10_0.0/ctm.filt.filt.sys
%WER 9.9 | 1155 27500 | 91.3 6.1 2.6 1.2 9.9 74.1 | -0.306 | exp/nnet3_cleaned/lstm_bidirectional_sp/decode_test_rescore/score_10_0.0/ctm.filt.filt.sys
# nnet3 results without cleanup, run with:
# local/nnet3/run_tdnn.sh --train-set train --gmm tri3 --nnet3-affix ""
# This is only about 0.1% worse than the baseline with cleanup... the cleanup helps
# mostly for the chain models.
for d in exp/nnet3/tdnn_sp/decode_*; do grep Sum $d/*/*ys | utils/best_wer.sh; done
%WER 12.6 | 507 17783 | 89.6 7.4 3.1 2.1 12.6 83.6 | -0.051 | exp/nnet3/tdnn_sp/decode_dev/score_10_0.0/ctm.filt.filt.sys
%WER 11.5 | 1155 27500 | 90.0 7.2 2.8 1.5 11.5 79.5 | -0.141 | exp/nnet3/tdnn_sp/decode_test/score_10_0.0/ctm.filt.filt.sys
%WER 11.9 | 507 17783 | 90.0 6.9 3.1 1.9 11.9 82.4 | -0.032 | exp/nnet3/tdnn_sp/decode_dev_rescore/score_11_0.0/ctm.filt.filt.sys
%WER 10.9 | 1155 27500 | 90.4 6.7 2.9 1.4 10.9 77.1 | -0.109 | exp/nnet3/tdnn_sp/decode_test_rescore/score_11_0.0/ctm.filt.filt.sys
########## nnet3+chain systems
# chain+TDNN, small LM
%WER 9.2 | 507 17783 | 92.0 5.6 2.3 1.3 9.2 78.7 | 0.070 | exp/chain_cleaned/tdnn1e_sp_bi/decode_dev/score_9_0.0/ctm.filt.filt.sys
%WER 9.4 | 1155 27500 | 91.8 5.5 2.7 1.2 9.4 71.7 | 0.140 | exp/chain_cleaned/tdnn1e_sp_bi/decode_test/score_10_0.0/ctm.filt.filt.sys
# chain+TDNN, large LM
%WER 8.6 | 507 17783 | 92.5 4.9 2.5 1.2 8.6 75.9 | 0.069 | exp/chain_cleaned/tdnn1e_sp_bi/decode_dev_rescore/score_10_0.0/ctm.filt.filt.sys
%WER 8.9 | 1155 27500 | 92.2 5.1 2.7 1.1 8.9 70.0 | 0.108 | exp/chain_cleaned/tdnn1e_sp_bi/decode_test_rescore/score_10_0.0/ctm.filt.filt.sys
# chain+TDNN systems ran without cleanup, using the command:
# local/chain/run_tdnn.sh --train-set train --gmm tri3 --nnet3-affix ""
# for d in exp/chain/tdnn_sp_bi/decode_*; do grep Sum $d/*/*ys | utils/best_wer.sh; done
# This is about 0.6% worse than the corresponding results with cleanup.
%WER 11.0 | 507 17783 | 90.9 6.5 2.6 1.9 11.0 80.5 | 0.004 | exp/chain/tdnn_sp_bi/decode_dev/score_8_0.0/ctm.filt.filt.sys
%WER 10.1 | 1155 27500 | 91.2 6.0 2.8 1.3 10.1 75.5 | -0.004 | exp/chain/tdnn_sp_bi/decode_test/score_8_0.0/ctm.filt.filt.sys
%WER 10.6 | 507 17783 | 90.7 5.5 3.8 1.3 10.6 79.3 | 0.070 | exp/chain/tdnn_sp_bi/decode_dev_rescore/score_10_0.0/ctm.filt.filt.sys
%WER 9.8 | 1155 27500 | 91.2 5.2 3.7 1.0 9.8 73.2 | 0.055 | exp/chain/tdnn_sp_bi/decode_test_rescore/score_10_0.0/ctm.filt.filt.sys