cstr_wsj_data_prep.sh
7.59 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#!/bin/bash
set -e
# Copyright 2009-2012 Microsoft Corporation Johns Hopkins University (Author: Daniel Povey)
# Apache 2.0.
# This is modified from the script in standard Kaldi recipe to account
# for the way the WSJ data is structured on the Edinburgh systems.
# - Arnab Ghoshal, 29/05/12
if [ $# -ne 1 ]; then
printf "\nUSAGE: %s <corpus-directory>\n\n" `basename $0`
echo "The argument should be a the top-level WSJ corpus directory."
echo "It is assumed that there will be a 'wsj0' and a 'wsj1' subdirectory"
echo "within the top-level corpus directory."
exit 1;
fi
CORPUS=$1
dir=`pwd`/data/local/data
lmdir=`pwd`/data/local/nist_lm
mkdir -p $dir $lmdir
local=`pwd`/local
utils=`pwd`/utils
. ./path.sh # Needed for KALDI_ROOT
sph2pipe=$KALDI_ROOT/tools/sph2pipe_v2.5/sph2pipe
if [ ! -x $sph2pipe ]; then
echo "Could not find (or execute) the sph2pipe program at $sph2pipe";
exit 1;
fi
if [ -z $IRSTLM ] ; then
export IRSTLM=$KALDI_ROOT/tools/irstlm/
fi
export PATH=${PATH}:$IRSTLM/bin
if ! command -v prune-lm >/dev/null 2>&1 ; then
echo "$0: Error: the IRSTLM is not available or compiled" >&2
echo "$0: Error: We used to install it by default, but." >&2
echo "$0: Error: this is no longer the case." >&2
echo "$0: Error: To install it, go to $KALDI_ROOT/tools" >&2
echo "$0: Error: and run extras/install_irstlm.sh" >&2
exit 1
fi
cd $dir
# This version for SI-84
cat $CORPUS/wsj0/doc/indices/train/tr_s_wv1.ndx \
| $local/cstr_ndx2flist.pl $CORPUS | sort \
| grep -v wsj0/si_tr_s/401 > train_si84.flist
# This version for SI-284
cat $CORPUS/wsj1/doc/indices/si_tr_s.ndx \
$CORPUS/wsj0/doc/indices/train/tr_s_wv1.ndx \
| $local/cstr_ndx2flist.pl $CORPUS | sort \
| grep -v wsj0/si_tr_s/401 > train_si284.flist
# Now for the test sets.
# $CORPUS/wsj1/doc/indices/readme.doc
# describes all the different test sets.
# Note: each test-set seems to come in multiple versions depending
# on different vocabulary sizes, verbalized vs. non-verbalized
# pronunciations, etc. We use the largest vocab and non-verbalized
# pronunciations.
# The most normal one seems to be the "baseline 60k test set", which
# is h1_p0.
# Nov'92 (333 utts)
# These index files have a slightly different format;
# have to add .wv1, which is done in cstr_ndx2flist.pl
cat $CORPUS/wsj0/doc/indices/test/nvp/si_et_20.ndx | \
$local/cstr_ndx2flist.pl $CORPUS | sort > test_eval92.flist
# Nov'92 (330 utts, 5k vocab)
cat $CORPUS/wsj0/doc/indices/test/nvp/si_et_05.ndx | \
$local/cstr_ndx2flist.pl $CORPUS | sort > test_eval92_5k.flist
# Nov'93: (213 utts)
# Have to replace a wrong disk-id.
cat $CORPUS/wsj1/doc/indices/wsj1/eval/h1_p0.ndx | \
$local/cstr_ndx2flist.pl $CORPUS | sort > test_eval93.flist
# Nov'93: (215 utts, 5k)
cat $CORPUS/wsj1/doc/indices/wsj1/eval/h2_p0.ndx | \
$local/cstr_ndx2flist.pl $CORPUS | sort > test_eval93_5k.flist
# Dev-set for Nov'93 (503 utts)
cat $CORPUS/wsj1/doc/indices/h1_p0.ndx | \
$local/cstr_ndx2flist.pl $CORPUS | sort > test_dev93.flist
# Dev-set for Nov'93 (513 utts, 5k vocab)
cat $CORPUS/wsj1/doc/indices/h2_p0.ndx | \
$local/cstr_ndx2flist.pl $CORPUS | sort > test_dev93_5k.flist
# Dev-set Hub 1,2 (503, 913 utterances)
# Note: the ???'s below match WSJ and SI_DT, or wsj and si_dt.
# Sometimes this gets copied from the CD's with upcasing, don't know
# why (could be older versions of the disks).
find $CORPUS/???1/??_??_20 -print | grep -i ".wv1" | sort > dev_dt_20.flist
find $CORPUS/???1/??_??_05 -print | grep -i ".wv1" | sort > dev_dt_05.flist
# Finding the transcript files:
find -L $CORPUS -iname '*.dot' > dot_files.flist
# Convert the transcripts into our format (no normalization yet)
for x in train_si84 train_si284 test_eval92 test_eval93 test_dev93 test_eval92_5k test_eval93_5k test_dev93_5k dev_dt_05 dev_dt_20; do
$local/flist2scp.pl $x.flist | sort > ${x}_sph.scp
cat ${x}_sph.scp | awk '{print $1}' \
| $local/find_transcripts.pl dot_files.flist > $x.trans1
done
# Do some basic normalization steps. At this point we don't remove OOVs--
# that will be done inside the training scripts, as we'd like to make the
# data-preparation stage independent of the specific lexicon used.
noiseword="<NOISE>";
for x in train_si84 train_si284 test_eval92 test_eval93 test_dev93 test_eval92_5k test_eval93_5k test_dev93_5k dev_dt_05 dev_dt_20; do
cat $x.trans1 | $local/normalize_transcript.pl $noiseword \
| sort > $x.txt || exit 1;
done
# Create scp's with wav's. (the wv1 in the distribution is not really wav, it is sph.)
for x in train_si84 train_si284 test_eval92 test_eval93 test_dev93 test_eval92_5k test_eval93_5k test_dev93_5k dev_dt_05 dev_dt_20; do
awk '{printf("%s '$sph2pipe' -f wav %s |\n", $1, $2);}' < ${x}_sph.scp \
> ${x}_wav.scp
done
# Make the utt2spk and spk2utt files.
for x in train_si84 train_si284 test_eval92 test_eval93 test_dev93 test_eval92_5k test_eval93_5k test_dev93_5k dev_dt_05 dev_dt_20; do
cat ${x}_sph.scp | awk '{print $1}' \
| perl -ane 'chop; m:^...:; print "$_ $&\n";' > $x.utt2spk
cat $x.utt2spk | $utils/utt2spk_to_spk2utt.pl > $x.spk2utt || exit 1;
done
#in case we want to limit lm's on most frequent words, copy lm training word frequency list
cp $CORPUS/wsj1/doc/lng_modl/vocab/wfl_64.lst $lmdir
chmod u+w $lmdir/*.lst # had weird permissions on source.
# The 20K vocab, open-vocabulary language model (i.e. the one with UNK), without
# verbalized pronunciations. This is the most common test setup, I understand.
cp $CORPUS/wsj1/doc/lng_modl/base_lm/bcb20onp.z $lmdir/lm_bg.arpa.gz || exit 1;
chmod u+w $lmdir/lm_bg.arpa.gz
# trigram would be:
cat $CORPUS/wsj1/doc/lng_modl/base_lm/tcb20onp.z | \
perl -e 'while(<>){ if(m/^\\data\\/){ print; last; } } while(<>){ print; }' \
| gzip -c -f > $lmdir/lm_tg.arpa.gz || exit 1;
prune-lm --threshold=1e-7 $lmdir/lm_tg.arpa.gz $lmdir/lm_tgpr.arpa || exit 1;
gzip -f $lmdir/lm_tgpr.arpa || exit 1;
# repeat for 5k language models
cp $CORPUS/wsj1/doc/lng_modl/base_lm/bcb05onp.z $lmdir/lm_bg_5k.arpa.gz || exit 1;
chmod u+w $lmdir/lm_bg_5k.arpa.gz
# trigram would be: !only closed vocabulary here!
cp $CORPUS/wsj1/doc/lng_modl/base_lm/tcb05cnp.z $lmdir/lm_tg_5k.arpa.gz || exit 1;
chmod u+w $lmdir/lm_tg_5k.arpa.gz
gunzip $lmdir/lm_tg_5k.arpa.gz
tail -n 4328839 $lmdir/lm_tg_5k.arpa | gzip -c -f > $lmdir/lm_tg_5k.arpa.gz
rm $lmdir/lm_tg_5k.arpa
prune-lm --threshold=1e-7 $lmdir/lm_tg_5k.arpa.gz $lmdir/lm_tgpr_5k.arpa || exit 1;
gzip -f $lmdir/lm_tgpr_5k.arpa || exit 1;
if [ ! -f wsj0-train-spkrinfo.txt ] || [ `cat wsj0-train-spkrinfo.txt | wc -l` -ne 134 ]; then
rm -f wsj0-train-spkrinfo.txt
wget https://catalog.ldc.upenn.edu/docs/LDC93S6A/wsj0-train-spkrinfo.txt \
|| ( echo "Getting wsj0-train-spkrinfo.txt from backup location" && \
wget --no-check-certificate https://sourceforge.net/projects/kaldi/files/wsj0-train-spkrinfo.txt );
fi
if [ ! -f wsj0-train-spkrinfo.txt ]; then
echo "Could not get the spkrinfo.txt file from LDC website (moved)?"
echo "This is possibly omitted from the training disks; couldn't find it."
echo "Everything else may have worked; we just may be missing gender info"
echo "which is only needed for VTLN-related diagnostics anyway."
exit 1
fi
# Note: wsj0-train-spkrinfo.txt doesn't seem to be on the disks but the
# LDC put it on the web. Perhaps it was accidentally omitted from the
# disks.
cat $CORPUS/wsj0/doc/spkrinfo.txt \
$CORPUS/wsj1/doc/evl_spok/spkrinfo.txt \
$CORPUS/wsj1/doc/dev_spok/spkrinfo.txt \
$CORPUS/wsj1/doc/train/spkrinfo.txt \
./wsj0-train-spkrinfo.txt | \
perl -ane 'tr/A-Z/a-z/; m/^;/ || print;' | \
awk '{print $1, $2}' | grep -v -- -- | sort | uniq > spk2gender
echo "Data preparation succeeded"