cstr_wsj_extend_dict.sh
6.73 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#!/bin/bash
# This script builds a larger word-list and dictionary
# than used for the LMs supplied with the WSJ corpus.
# It uses a couple of strategies to fill-in words in
# the LM training data but not in CMUdict. One is
# to generate special prons for possible acronyms, that
# just consist of the constituent letters. The other
# is designed to handle derivatives of known words
# (e.g. deriving the pron of a plural from the pron of
# the base-word), but in a more general, learned-from-data
# way.
# It makes use of scripts in local/dict/
dict_suffix=
echo "$0 $@" # Print the command line for logging
. utils/parse_options.sh || exit 1;
if [ $# -ne 1 ]; then
echo "Usage: local/cstr_wsj_train_lms.sh WSJ1_doc_dir"
exit 1
fi
export PATH=$PATH:`pwd`/local/dict/
srcdir=$1
if [ ! -d $srcdir/lng_modl ]; then
echo "Expecting 'lng_modl' under WSJ doc directory '$srcdir'"
exit 1
fi
mkdir -p data/local/dict${dict_suffix}_larger
dir=data/local/dict${dict_suffix}_larger
cp data/local/dict${dict_suffix}/* data/local/dict${dict_suffix}_larger # Various files describing phones etc.
# are there; we just want to copy them as the phoneset is the same.
rm data/local/dict${dict_suffix}_larger/lexicon.txt # we don't want this.
rm data/local/dict${dict_suffix}_larger/lexiconp.txt # we don't want this either.
mincount=2 # Minimum count of an OOV we will try to generate a pron for.
[ ! -f data/local/dict${dict_suffix}/cmudict/cmudict.0.7a ] && echo "CMU dict not in expected place" && exit 1;
# Remove comments from cmudict; print first field; remove
# words like FOO(1) which are alternate prons: our dict format won't
# include these markers.
grep -v ';;;' data/local/dict${dict_suffix}/cmudict/cmudict.0.7a |
perl -ane 's/^(\S+)\(\d+\)/$1/; print; ' | sort | uniq > $dir/dict.cmu
cat $dir/dict.cmu | awk '{print $1}' | sort | uniq > $dir/wordlist.cmu
echo "Getting training data [this should take at least a few seconds; if not, there's a problem]"
# Convert to uppercase, remove XML-like markings.
# For words ending in "." that are not in CMUdict, we assume that these
# are periods that somehow remained in the data during data preparation,
# and we we replace the "." with "\n". Note: we found this by looking at
# oov.counts below (before adding this rule).
touch $dir/cleaned.gz
if [ `du -m $dir/cleaned.gz | cut -f 1` -eq 73 ]; then
echo "Not getting cleaned data in $dir/cleaned.gz again [already exists]";
else
gunzip -c $srcdir/lng_modl/lm_train/np_data/{87,88,89}/*.z \
| awk '/^</{next}{print toupper($0)}' | perl -e '
open(F, "<$ARGV[0]")||die;
while(<F>){ chop; $isword{$_} = 1; }
while(<STDIN>) {
@A = split(" ", $_);
for ($n = 0; $n < @A; $n++) {
$a = $A[$n];
if (! $isword{$a} && $a =~ s/^([^\.]+)\.$/$1/) { # nonwords that end in "."
# and have no other "." in them: treat as period.
print "$a";
if ($n+1 < @A) { print "\n"; }
} else { print "$a "; }
}
print "\n";
}
' $dir/wordlist.cmu | gzip -c > $dir/cleaned.gz
fi
# get unigram counts
echo "Getting unigram counts"
gunzip -c $dir/cleaned.gz | tr -s ' ' '\n' | \
awk '{count[$1]++} END{for (w in count) { print count[w], w; }}' | sort -nr > $dir/unigrams
cat $dir/unigrams | awk -v dict=$dir/dict.cmu \
'BEGIN{while(getline<dict) seen[$1]=1;} {if(!seen[$2]){print;}}' \
> $dir/oov.counts
echo "Most frequent unseen unigrams are: "
head $dir/oov.counts
# Prune away singleton counts, and remove things with numbers in
# (which should have been normalized) and with no letters at all.
cat $dir/oov.counts | awk -v thresh=$mincount '{if ($1 >= thresh) { print $2; }}' \
| awk '/[0-9]/{next;} /[A-Z]/{print;}' > $dir/oovlist
# Automatic rule-finding...
# First make some prons for possible acronyms.
# Note: we don't do this for things like U.K or U.N,
# or A.B. (which doesn't exist anyway),
# as we consider this normalization/spelling errors.
cat $dir/oovlist | local/dict/get_acronym_prons.pl $dir/dict.cmu > $dir/dict.acronyms
mkdir $dir/f $dir/b # forward, backward directions of rules...
# forward is normal suffix
# rules, backward is reversed (prefix rules). These
# dirs contain stuff we create while making the rule-based
# extensions to the dictionary.
# Remove ; and , from words, if they are present; these
# might crash our scripts, as they are used as separators there.
filter_dict.pl $dir/dict.cmu > $dir/f/dict
cat $dir/oovlist | filter_dict.pl > $dir/f/oovs
reverse_dict.pl $dir/f/dict > $dir/b/dict
reverse_dict.pl $dir/f/oovs > $dir/b/oovs
# The next stage takes a few minutes.
# Note: the forward stage takes longer, as English is
# mostly a suffix-based language, and there are more rules
# that it finds.
for d in $dir/f $dir/b; do
(
cd $d
cat dict | get_rules.pl 2>get_rules.log >rules
get_rule_hierarchy.pl rules >hierarchy
awk '{print $1}' dict | get_candidate_prons.pl rules dict | \
limit_candidate_prons.pl hierarchy | \
score_prons.pl dict | \
count_rules.pl >rule.counts
# the sort command below is just for convenience of reading.
score_rules.pl <rule.counts | sort -t';' -k3,3 -n -r >rules.with_scores
get_candidate_prons.pl rules.with_scores dict oovs | \
limit_candidate_prons.pl hierarchy > oovs.candidates
) &
done
wait
# Merge the candidates.
reverse_candidates.pl $dir/b/oovs.candidates | cat - $dir/f/oovs.candidates | sort > $dir/oovs.candidates
select_candidate_prons.pl <$dir/oovs.candidates | awk -F';' '{printf("%s %s\n", $1, $2);}' \
> $dir/dict.oovs
cat $dir/dict.acronyms $dir/dict.oovs | sort | uniq > $dir/dict.oovs_merged
awk '{print $1}' $dir/dict.oovs_merged | uniq > $dir/oovlist.handled
sort $dir/oovlist | diff - $dir/oovlist.handled | grep -v 'd' | sed 's:< ::' > $dir/oovlist.not_handled
# add_counts.pl attaches to original counts to the list of handled/not-handled OOVs
add_counts.pl $dir/oov.counts $dir/oovlist.handled | sort -nr > $dir/oovlist.handled.counts
add_counts.pl $dir/oov.counts $dir/oovlist.not_handled | sort -nr > $dir/oovlist.not_handled.counts
echo "**Top OOVs we handled are:**";
head $dir/oovlist.handled.counts
echo "**Top OOVs we didn't handle are as follows (note: they are mostly misspellings):**";
head $dir/oovlist.not_handled.counts
echo "Count of OOVs we handled is `awk '{x+=$1} END{print x}' $dir/oovlist.handled.counts`"
echo "Count of OOVs we couldn't handle is `awk '{x+=$1} END{print x}' $dir/oovlist.not_handled.counts`"
echo "Count of OOVs we didn't handle due to low count is" \
`awk -v thresh=$mincount '{if ($1 < thresh) x+=$1; } END{print x;}' $dir/oov.counts`
# The two files created above are for humans to look at, as diagnostics.
cat <<EOF | cat - $dir/dict.cmu $dir/dict.oovs_merged | sort | uniq > $dir/lexicon.txt
!SIL SIL
<SPOKEN_NOISE> SPN
<UNK> SPN
<NOISE> NSN
EOF
echo "Created $dir/lexicon.txt"