run_tdnn_1a.sh
5.81 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/bin/bash
# This is the standard "tdnn" system, built in nnet3 with xconfigs.
# local/nnet3/compare_wer.sh exp/nnet3/tdnn1a_sp
# System tdnn1a_sp
#WER dev93 (tgpr) 9.18
#WER dev93 (tg) 8.59
#WER dev93 (big-dict,tgpr) 6.45
#WER dev93 (big-dict,fg) 5.83
#WER eval92 (tgpr) 6.15
#WER eval92 (tg) 5.55
#WER eval92 (big-dict,tgpr) 3.58
#WER eval92 (big-dict,fg) 2.98
# Final train prob -0.7200
# Final valid prob -0.8834
# Final train acc 0.7762
# Final valid acc 0.7301
set -e -o pipefail -u
# First the options that are passed through to run_ivector_common.sh
# (some of which are also used in this script directly).
stage=0
nj=30
train_set=train_si284
test_sets="test_dev93 test_eval92"
gmm=tri4b # this is the source gmm-dir that we'll use for alignments; it
# should have alignments for the specified training data.
num_threads_ubm=32
nnet3_affix= # affix for exp dirs, e.g. it was _cleaned in tedlium.
tdnn_affix=1a #affix for TDNN directory e.g. "1a" or "1b", in case we change the configuration.
# Options which are not passed through to run_ivector_common.sh
train_stage=-10
remove_egs=true
srand=0
reporting_email=
# set common_egs_dir to use previously dumped egs.
common_egs_dir=
. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh
if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi
local/nnet3/run_ivector_common.sh --stage $stage --nj $nj \
--train-set $train_set --gmm $gmm \
--num-threads-ubm $num_threads_ubm \
--nnet3-affix "$nnet3_affix"
gmm_dir=exp/${gmm}
ali_dir=exp/${gmm}_ali_${train_set}_sp
dir=exp/nnet3${nnet3_affix}/tdnn${tdnn_affix}_sp
train_data_dir=data/${train_set}_sp_hires
train_ivector_dir=exp/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires
for f in $train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp \
$gmm_dir/{graph_tgpr,graph_bd_tgpr}/HCLG.fst \
$ali_dir/ali.1.gz $gmm_dir/final.mdl; do
[ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1
done
if [ $stage -le 12 ]; then
mkdir -p $dir
echo "$0: creating neural net configs using the xconfig parser";
num_targets=$(tree-info $gmm_dir/tree |grep num-pdfs|awk '{print $2}')
mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
# the first splicing is moved before the lda layer, so no splicing here
relu-renorm-layer name=tdnn1 dim=650
relu-renorm-layer name=tdnn2 dim=650 input=Append(-1,0,1)
relu-renorm-layer name=tdnn3 dim=650 input=Append(-1,0,1)
relu-renorm-layer name=tdnn4 dim=650 input=Append(-3,0,3)
relu-renorm-layer name=tdnn5 dim=650 input=Append(-6,-3,0)
output-layer name=output dim=$num_targets max-change=1.5
EOF
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
fi
if [ $stage -le 13 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{3,4,5,6}/$USER/kaldi-data/egs/tedlium-$(date +'%m_%d_%H_%M')/s5_r2/$dir/egs/storage $dir/egs/storage
fi
steps/nnet3/train_dnn.py --stage=$train_stage \
--cmd="$decode_cmd" \
--feat.online-ivector-dir=$train_ivector_dir \
--feat.cmvn-opts="--norm-means=false --norm-vars=false" \
--trainer.srand=$srand \
--trainer.max-param-change=2.0 \
--trainer.num-epochs=3 \
--trainer.samples-per-iter=400000 \
--trainer.optimization.num-jobs-initial=2 \
--trainer.optimization.num-jobs-final=10 \
--trainer.optimization.initial-effective-lrate=0.0015 \
--trainer.optimization.final-effective-lrate=0.00015 \
--trainer.optimization.minibatch-size=256,128 \
--egs.dir="$common_egs_dir" \
--cleanup.remove-egs=$remove_egs \
--use-gpu=true \
--feat-dir=$train_data_dir \
--ali-dir=$ali_dir \
--lang=data/lang \
--reporting.email="$reporting_email" \
--dir=$dir || exit 1;
fi
if [ $stage -le 14 ]; then
# note: for TDNNs, looped decoding gives exactly the same results
# as regular decoding, so there is no point in testing it separately.
# We use regular decoding because it supports multi-threaded (we just
# didn't create the binary for that, for looped decoding, so far).
rm $dir/.error || true 2>/dev/null
for data in $test_sets; do
(
data_affix=$(echo $data | sed s/test_//)
nj=$(wc -l <data/${data}_hires/spk2utt)
for lmtype in tgpr bd_tgpr; do
graph_dir=$gmm_dir/graph_${lmtype}
steps/nnet3/decode.sh --nj $nj --cmd "$decode_cmd" --num-threads 4 \
--online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${data}_hires \
${graph_dir} data/${data}_hires ${dir}/decode_${lmtype}_${data_affix} || exit 1
done
steps/lmrescore.sh --cmd "$decode_cmd" data/lang_test_{tgpr,tg} \
data/${data}_hires ${dir}/decode_{tgpr,tg}_${data_affix} || exit 1
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
data/lang_test_bd_{tgpr,fgconst} \
data/${data}_hires ${dir}/decode_${lmtype}_${data_affix}{,_fg} || exit 1
) || touch $dir/.error &
done
wait
[ -f $dir/.error ] && echo "$0: there was a problem while decoding" && exit 1
fi
exit 0;