find_bad_utts_nnet.sh
7.24 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/bin/bash
# Copyright 2012-2014 Johns Hopkins University (Author: Daniel Povey)
# 2016 Api.ai (Author: Ilya Platonov)
# Apache 2.0
#
# Tweaked version of find_bad_utts.sh to work with nnet2 and nnet3(supports chain models) non-ivector models.
# This script uses nnet-info and nnet3-am-info to determine type of nnet (nnet2 or nnet3).
# Use --acoustic-scale=1.0 for chain models.
#
# Begin configuration section.
nj=8
cmd=run.pl
use_graphs=false
# Begin configuration.
scale_opts="--transition-scale=1.0 --self-loop-scale=0.1"
acoustic_scale=0.1
beam=15.0
lattice_beam=8.0
max_active=750
transform_dir= # directory to find fMLLR transforms in.
top_n_words=100 # Number of common words that we compile into each graph (most frequent
# in $lang/text.
stage=-1
cleanup=true
# End configuration options.
echo "$0 $@" # Print the command line for logging
[ -f path.sh ] && . ./path.sh # source the path.
. parse_options.sh || exit 1;
if [ $# != 4 ]; then
echo "usage: $0 <data-dir> <lang-dir> <src-dir> <dir>"
echo "e.g.: $0 data/train data/lang exp/tri1 exp/tri1_debug"
echo "main options (for others, see top of script file)"
echo " --config <config-file> # config containing options"
echo " --nj <nj> # number of parallel jobs"
echo " --use-graphs true # use graphs in src-dir"
echo " --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
exit 1;
fi
data=$1
lang=$2
srcdir=$3
dir=$4
for f in $data/text $lang/oov.int $srcdir/tree $srcdir/final.mdl \
$lang/L_disambig.fst $lang/phones/disambig.int; do
[ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1;
done
oov=`cat $lang/oov.int` || exit 1;
mkdir -p $dir/log
echo $nj > $dir/num_jobs
sdata=$data/split$nj
splice_opts=`cat $srcdir/splice_opts 2>/dev/null` # frame-splicing options.
cp $srcdir/splice_opts $dir 2>/dev/null # frame-splicing options.
cmvn_opts=`cat $srcdir/cmvn_opts 2>/dev/null`
cp $srcdir/cmvn_opts $dir 2>/dev/null # cmn/cmvn option.
[[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1;
cp $srcdir/{tree,final.mdl} $dir || exit 1;
utils/lang/check_phones_compatible.sh $lang/phones.txt $srcdir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;
#checking type of nnet
if nnet-info 1>/dev/null 2>/dev/null $srcdir/final.mdl; then
nnet_type="nnet";
latgen_cmd="nnet-latgen-faster";
elif nnet3-am-info 1>/dev/null 2>/dev/null $srcdir/final.mdl; then
nnet_type="nnet3"
frame_subsampling_factor=1;
nnet3_opt=
if [ -f $srcdir/frame_subsampling_factor ]; then
frame_subsampling_factor="$(cat $srcdir/frame_subsampling_factor)"
fi
if [ "$frame_subsamping_factor" != "1" ]; then
nnet3_opt="--frame-subsampling-factor=$frame_subsampling_factor";
fi
latgen_cmd="nnet3-latgen-faster $nnet3_opt";
else
echo "Unsupported type of nnet for $srcdir/final.mdl";
fi
echo "nnet type is $nnet_type";
if [ $stage -le 0 ]; then
utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt <$data/text | \
awk '{for(x=2;x<=NF;x++) print $x;}' | sort | uniq -c | \
sort -rn > $dir/word_counts.int || exit 1;
num_words=$(awk '{x+=$1} END{print x}' < $dir/word_counts.int) || exit 1;
# print top-n words with their unigram probabilities.
head -n $top_n_words $dir/word_counts.int | awk -v tot=$num_words '{print $1/tot, $2;}' >$dir/top_words.int
utils/int2sym.pl -f 2 $lang/words.txt <$dir/top_words.int >$dir/top_words.txt
fi
echo "$0: feature type is raw"
feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |";
if [ $stage -le 1 ]; then
echo "$0: decoding $data using utterance-specific decoding graphs using model from $srcdir, output in $dir"
rm $dir/edits.*.txt $dir/aligned_ref.*.txt 2>/dev/null
$cmd JOB=1:$nj $dir/log/decode.JOB.log \
utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt $sdata/JOB/text \| \
steps/cleanup/make_utterance_fsts.pl $dir/top_words.int \| \
compile-train-graphs-fsts $scale_opts --read-disambig-syms=$lang/phones/disambig.int \
$dir/tree $dir/final.mdl $lang/L_disambig.fst ark:- ark:- \| \
$latgen_cmd --acoustic-scale=$acoustic_scale --beam=$beam \
--max-active=$max_active --lattice-beam=$lattice_beam \
--word-symbol-table=$lang/words.txt \
$dir/final.mdl ark:- "$feats" ark:- \| \
lattice-oracle ark:- "ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt $sdata/JOB/text|" \
ark,t:- ark,t:$dir/edits.JOB.txt \| \
utils/int2sym.pl -f 2- $lang/words.txt '>' $dir/aligned_ref.JOB.txt || exit 1;
fi
if [ $stage -le 2 ]; then
if [ -f $dir/edits.1.txt ]; then
# the awk commands below are to ensure that partially-written files don't confuse us.
for x in $(seq $nj); do cat $dir/edits.$x.txt; done | awk '{if(NF==2){print;}}' > $dir/edits.txt
for x in $(seq $nj); do cat $dir/aligned_ref.$x.txt; done | awk '{if(NF>=1){print;}}' > $dir/aligned_ref.txt
else
echo "$0: warning: no file $dir/edits.1.txt, using previously concatenated file if present."
fi
# in case any utterances failed to align, get filtered copy of $data/text
utils/filter_scp.pl $dir/edits.txt < $data/text > $dir/text
cat $dir/text | awk '{print $1, (NF-1);}' > $dir/length.txt
n1=$(wc -l < $dir/edits.txt)
n2=$(wc -l < $dir/aligned_ref.txt)
n3=$(wc -l < $dir/text)
n4=$(wc -l < $dir/length.txt)
if [ $n1 -ne $n2 ] || [ $n2 -ne $n3 ] || [ $n3 -ne $n4 ]; then
echo "$0: mismatch in lengths of files:"
wc $dir/edits.txt $dir/aligned_ref.txt $dir/text $dir/length.txt
exit 1;
fi
# note: the format of all_info.txt is:
# <utterance-id> <number of errors> <reference-length> <decoded-output> <reference>
# with the fields separated by tabs, e.g.
# adg04_sr009_trn 1 12 SHOW THE GRIDLEY+S TRACK IN BRIGHT ORANGE WITH HORNE+S IN DIM RED AT SHOW THE GRIDLEY+S TRACK IN BRIGHT ORANGE WITH HORNE+S IN DIM RED
paste $dir/edits.txt \
<(awk '{print $2}' $dir/length.txt) \
<(awk '{$1="";print;}' <$dir/aligned_ref.txt) \
<(awk '{$1="";print;}' <$dir/text) > $dir/all_info.txt
sort -nr -k2 $dir/all_info.txt > $dir/all_info.sorted.txt
if $cleanup; then
rm $dir/edits.*.txt $dir/aligned_ref.*.txt
fi
fi
if [ $stage -le 3 ]; then
###
# These stats migh help people figure out what is wrong with the data
# a)human-friendly and machine-parsable alignment in the file per_utt_details.txt
# b)evaluation of per-speaker performance to possibly find speakers with
# distinctive accents/speech disorders and similar
# c)Global analysis on (Ins/Del/Sub) operation, which might be used to figure
# out if there is systematic issue with lexicon, pronunciation or phonetic confusability
mkdir -p $dir/analysis
align-text --special-symbol="***" ark:$dir/text ark:$dir/aligned_ref.txt ark,t:- | \
utils/scoring/wer_per_utt_details.pl --special-symbol "***" > $dir/analysis/per_utt_details.txt
cat $dir/analysis/per_utt_details.txt | \
utils/scoring/wer_per_spk_details.pl $data/utt2spk > $dir/analysis/per_spk_details.txt
cat $dir/analysis/per_utt_details.txt | \
utils/scoring/wer_ops_details.pl --special-symbol "***" | \
sort -i -b -k1,1 -k4,4nr -k2,2 -k3,3 > $dir/analysis/ops_details.txt
fi