find_bad_utts_nnet.sh 7.24 KB
#!/bin/bash
# Copyright 2012-2014  Johns Hopkins University (Author: Daniel Povey)
#           2016       Api.ai (Author: Ilya Platonov)      
# Apache 2.0
#
# Tweaked version of find_bad_utts.sh to work with nnet2 and nnet3(supports chain models) non-ivector models.
# This script uses nnet-info and nnet3-am-info to determine type of nnet (nnet2 or nnet3).
# Use --acoustic-scale=1.0 for chain models.
#
# Begin configuration section.  
nj=8
cmd=run.pl
use_graphs=false
# Begin configuration.
scale_opts="--transition-scale=1.0 --self-loop-scale=0.1"
acoustic_scale=0.1
beam=15.0
lattice_beam=8.0
max_active=750
transform_dir=  # directory to find fMLLR transforms in.
top_n_words=100 # Number of common words that we compile into each graph (most frequent
                # in $lang/text.
stage=-1
cleanup=true
# End configuration options.

echo "$0 $@"  # Print the command line for logging

[ -f path.sh ] && . ./path.sh # source the path.
. parse_options.sh || exit 1;

if [ $# != 4 ]; then
   echo "usage: $0 <data-dir> <lang-dir> <src-dir> <dir>"
   echo "e.g.:  $0 data/train data/lang exp/tri1 exp/tri1_debug"
   echo "main options (for others, see top of script file)"
   echo "  --config <config-file>                           # config containing options"
   echo "  --nj <nj>                                        # number of parallel jobs"
   echo "  --use-graphs true                                # use graphs in src-dir"
   echo "  --cmd (utils/run.pl|utils/queue.pl <queue opts>) # how to run jobs."
   exit 1;
fi

data=$1
lang=$2
srcdir=$3
dir=$4

for f in $data/text $lang/oov.int $srcdir/tree $srcdir/final.mdl \
    $lang/L_disambig.fst $lang/phones/disambig.int; do
  [ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1;
done

oov=`cat $lang/oov.int` || exit 1;
mkdir -p $dir/log
echo $nj > $dir/num_jobs
sdata=$data/split$nj
splice_opts=`cat $srcdir/splice_opts 2>/dev/null` # frame-splicing options.
cp $srcdir/splice_opts $dir 2>/dev/null # frame-splicing options.
cmvn_opts=`cat $srcdir/cmvn_opts 2>/dev/null`
cp $srcdir/cmvn_opts $dir 2>/dev/null # cmn/cmvn option.

[[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1;

cp $srcdir/{tree,final.mdl} $dir || exit 1;

utils/lang/check_phones_compatible.sh $lang/phones.txt $srcdir/phones.txt || exit 1;
cp $lang/phones.txt $dir || exit 1;

#checking type of nnet
if nnet-info 1>/dev/null 2>/dev/null $srcdir/final.mdl; then 
  nnet_type="nnet";
  latgen_cmd="nnet-latgen-faster";
elif nnet3-am-info 1>/dev/null 2>/dev/null $srcdir/final.mdl; then
  nnet_type="nnet3"
  frame_subsampling_factor=1;
  nnet3_opt=
  if [ -f $srcdir/frame_subsampling_factor ]; then
    frame_subsampling_factor="$(cat $srcdir/frame_subsampling_factor)"
  fi
  if [ "$frame_subsamping_factor" != "1" ]; then
    nnet3_opt="--frame-subsampling-factor=$frame_subsampling_factor";
  fi
  latgen_cmd="nnet3-latgen-faster $nnet3_opt";
else
  echo "Unsupported type of nnet for $srcdir/final.mdl";
fi 

echo "nnet type is $nnet_type";


if [ $stage -le 0 ]; then
  utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt <$data/text | \
    awk '{for(x=2;x<=NF;x++) print $x;}' | sort | uniq -c | \
    sort -rn > $dir/word_counts.int || exit 1;
  num_words=$(awk '{x+=$1} END{print x}' < $dir/word_counts.int) || exit 1;
  # print top-n words with their unigram probabilities.

  head -n $top_n_words $dir/word_counts.int | awk -v tot=$num_words '{print $1/tot, $2;}' >$dir/top_words.int
  utils/int2sym.pl -f 2 $lang/words.txt <$dir/top_words.int >$dir/top_words.txt
fi

echo "$0: feature type is raw"

feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- |";

if [ $stage -le 1 ]; then
  echo "$0: decoding $data using utterance-specific decoding graphs using model from $srcdir, output in $dir"

  rm $dir/edits.*.txt $dir/aligned_ref.*.txt 2>/dev/null

  $cmd JOB=1:$nj $dir/log/decode.JOB.log \
    utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt $sdata/JOB/text \| \
    steps/cleanup/make_utterance_fsts.pl $dir/top_words.int \| \
    compile-train-graphs-fsts $scale_opts --read-disambig-syms=$lang/phones/disambig.int \
     $dir/tree $dir/final.mdl $lang/L_disambig.fst ark:- ark:- \| \
    $latgen_cmd --acoustic-scale=$acoustic_scale --beam=$beam \
      --max-active=$max_active --lattice-beam=$lattice_beam \
      --word-symbol-table=$lang/words.txt \
     $dir/final.mdl ark:- "$feats" ark:- \| \
    lattice-oracle ark:- "ark:utils/sym2int.pl --map-oov $oov -f 2- $lang/words.txt $sdata/JOB/text|" \
      ark,t:- ark,t:$dir/edits.JOB.txt \| \
    utils/int2sym.pl -f 2- $lang/words.txt '>' $dir/aligned_ref.JOB.txt || exit 1;
fi


if [ $stage -le 2 ]; then
  if [ -f $dir/edits.1.txt ]; then
    # the awk commands below are to ensure that partially-written files don't confuse us.
    for x in $(seq $nj); do cat $dir/edits.$x.txt; done | awk '{if(NF==2){print;}}' > $dir/edits.txt
    for x in $(seq $nj); do cat $dir/aligned_ref.$x.txt; done | awk '{if(NF>=1){print;}}' > $dir/aligned_ref.txt
  else
    echo "$0: warning: no file $dir/edits.1.txt, using previously concatenated file if present."
  fi

  # in case any utterances failed to align, get filtered copy of $data/text
  utils/filter_scp.pl $dir/edits.txt < $data/text  > $dir/text
  cat $dir/text | awk '{print $1, (NF-1);}' > $dir/length.txt

  n1=$(wc -l < $dir/edits.txt)
  n2=$(wc -l < $dir/aligned_ref.txt)
  n3=$(wc -l < $dir/text)
  n4=$(wc -l < $dir/length.txt)
  if [ $n1 -ne $n2 ] || [ $n2 -ne $n3 ] || [ $n3 -ne $n4 ]; then
    echo "$0: mismatch in lengths of files:"
    wc $dir/edits.txt $dir/aligned_ref.txt $dir/text $dir/length.txt
    exit 1;
  fi

  # note: the format of all_info.txt is:
  # <utterance-id>   <number of errors>  <reference-length>  <decoded-output>   <reference>
  # with the fields separated by tabs, e.g.
  # adg04_sr009_trn 1 	12	 SHOW THE GRIDLEY+S TRACK IN BRIGHT ORANGE WITH HORNE+S IN DIM RED AT	 SHOW THE GRIDLEY+S TRACK IN BRIGHT ORANGE WITH HORNE+S IN DIM RED
  
  paste $dir/edits.txt \
      <(awk '{print $2}' $dir/length.txt) \
      <(awk '{$1="";print;}' <$dir/aligned_ref.txt) \
      <(awk '{$1="";print;}' <$dir/text) > $dir/all_info.txt

  sort -nr -k2 $dir/all_info.txt > $dir/all_info.sorted.txt

  if $cleanup; then
    rm $dir/edits.*.txt $dir/aligned_ref.*.txt
  fi

fi

if [ $stage -le 3 ]; then
  ###
  # These stats migh help people figure out what is wrong with the data
  # a)human-friendly and machine-parsable alignment in the file per_utt_details.txt
  # b)evaluation of per-speaker performance to possibly find speakers with 
  #   distinctive accents/speech disorders and similar
  # c)Global analysis on (Ins/Del/Sub) operation, which might be used to figure
  #   out if there is systematic issue with lexicon, pronunciation or phonetic confusability

  mkdir -p $dir/analysis
  align-text --special-symbol="***"  ark:$dir/text ark:$dir/aligned_ref.txt  ark,t:- | \
    utils/scoring/wer_per_utt_details.pl --special-symbol "***" > $dir/analysis/per_utt_details.txt

  cat $dir/analysis/per_utt_details.txt | \
    utils/scoring/wer_per_spk_details.pl $data/utt2spk > $dir/analysis/per_spk_details.txt

  cat $dir/analysis/per_utt_details.txt | \
    utils/scoring/wer_ops_details.pl --special-symbol "***" | \
    sort -i -b -k1,1 -k4,4nr -k2,2 -k3,3 > $dir/analysis/ops_details.txt

fi