align_ctm_ref.py
25.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
#! /usr/bin/env python
# Copyright 2016 Vimal Manohar
# Apache 2.0.
"""This module aligns a hypothesis (CTM or text) with a reference to
find the best matching sub-sequence in the reference for the hypothesis
using Smith-Waterman like alignment.
e.g.: align_ctm_ref.py --hyp-format=CTM --ref=data/train/text --hyp=foo/ctm
--output=foo/ctm_edits
"""
from __future__ import print_function
import argparse
import logging
import sys
sys.path.insert(0, 'steps')
import libs.common as common_lib
logger = logging.getLogger(__name__)
handler = logging.StreamHandler()
formatter = logging.Formatter("%(asctime)s [%(pathname)s:%(lineno)s - "
"%(funcName)s - %(levelname)s ] %(message)s")
handler.setFormatter(formatter)
logger.setLevel(logging.DEBUG)
verbose_level = 0
def get_args():
parser = argparse.ArgumentParser(description="""
This module aligns a hypothesis (CTM or text) with a reference to find the
best matching sub-sequence in the reference for the hypothesis using
Smith-Waterman like alignment.
e.g.: align_ctm_ref.py --align-full-hyp=false --hyp-format=CTM
--reco2file-and-channel=data/foo/reco2file_and_channel --ref=data/train/text
--hyp=foo/ctm --output=foo/ctm_edits
""")
parser.add_argument("--hyp-format", type=str, choices=["Text", "CTM"],
default="CTM",
help="Format used for the hypothesis")
parser.add_argument("--reco2file-and-channel", type=argparse.FileType('r'),
help="""reco2file_and_channel file.
This will be used to match references that are usually
indexed by the recording-id with the CTM lines that have
file and channel. This option is typically not
required.""")
parser.add_argument("--eps-symbol", type=str, default="-",
help="Symbol used to contain alignment "
"to empty symbol")
parser.add_argument("--oov-word", type=str, default=None,
action=common_lib.NullstrToNoneAction,
help="Symbol of OOV word in hypothesis")
parser.add_argument("--symbol-table", type=argparse.FileType('r'),
help="""Symbol table for words in vocabulary. Used
to determine if a word is a OOV or not""")
parser.add_argument("--correct-score", type=int, default=1,
help="Score for correct matches")
parser.add_argument("--substitution-penalty", type=int, default=1,
help="Penalty for substitution errors")
parser.add_argument("--deletion-penalty", type=int, default=1,
help="Penalty for deletion errors")
parser.add_argument("--insertion-penalty", type=int, default=1,
help="Penalty for insertion errors")
parser.add_argument("--align-full-hyp", type=str,
action=common_lib.StrToBoolAction,
choices=["true", "false"], default=True,
help="""Align full hypothesis i.e. trackback from
the end to get the alignment. This is different
from the normal Smith-Waterman alignment, where the
traceback will be from the maximum score.""")
parser.add_argument("--debug-only", type=str, default="false",
choices=["true", "false"],
help="Run test functions only")
parser.add_argument("--verbose", type=int, default=0,
choices=[0, 1, 2, 3],
help="Use larger value for more verbose logging.")
parser.add_argument("--ref", dest='ref_in_file',
type=argparse.FileType('r'), required=True,
help="Reference text file")
parser.add_argument("--hyp", dest='hyp_in_file', required=True,
type=argparse.FileType('r'),
help="Hypothesis text or CTM file")
parser.add_argument("--output", dest='alignment_out_file', required=True,
type=argparse.FileType('w'),
help="""File to write output alignment.
If hyp-format=CTM, then the output is in the form of
CTM, but with two additional columns of Edit-type and
Reference-word matched to the hypothesis.""")
args = parser.parse_args()
args.debug_only = bool(args.debug_only == "true")
global verbose_level
verbose_level = args.verbose
if args.verbose > 2:
handler.setLevel(logging.DEBUG)
else:
handler.setLevel(logging.INFO)
logger.addHandler(handler)
return args
def read_text(text_file):
"""Reads a kaldi-format text file and yield elements of a dictionary
{ utterane_id : transcript (as a list of words) }
The first-column of the text file is the utterance-id, which will be
used as the key to index the dictionary elements.
The remaining columns of the file are text of the transcript and they are
returned as a list of words.
"""
for line in text_file:
parts = line.strip().split()
if len(parts) < 1:
raise RuntimeError(
"Did not get enough columns; line {0} in {1}"
"".format(line, text_file.name))
elif len(parts) == 1:
logger.warn("Empty transcript for utterance %s in %s",
parts[0], text_file.name)
yield parts[0], []
else:
yield parts[0], parts[1:]
text_file.close()
def read_ctm(ctm_file, file_and_channel2reco=None):
"""Reads a CTM file and yields elements of a dictionary
{ utterance-id : CTM for the utterance },
where CTM for the utterance is stored as a list of lines
from a CTM correponding to the utterance.
Note: *_reco in the variables usually correspond to utterances rather
than recordings.
"""
prev_reco = ""
ctm_lines = []
for line in ctm_file:
try:
parts = line.strip().split()
parts[2] = float(parts[2])
parts[3] = float(parts[3])
if len(parts) == 5:
parts.append(1.0) # confidence defaults to 1.0.
if len(parts) != 6:
raise ValueError("CTM must have 6 fields.")
if file_and_channel2reco is None:
reco = parts[0]
if parts[1] != '1':
raise ValueError("Channel should be 1, "
"got {0}".format(parts[1]))
else:
reco = file_and_channel2reco[(parts[0], parts[1])]
if prev_reco != "" and reco != prev_reco:
# New recording
yield prev_reco, ctm_lines
ctm_lines = []
ctm_lines.append(parts[2:])
prev_reco = reco
except Exception:
logger.error("Error in processing CTM line {0}".format(line))
raise
if prev_reco != "" and len(ctm_lines) > 0:
yield prev_reco, ctm_lines
ctm_file.close()
def smith_waterman_alignment(ref, hyp, similarity_score_function,
del_score, ins_score,
eps_symbol="<eps>", align_full_hyp=True):
"""Does Smith-Waterman alignment of reference sequence and hypothesis
sequence.
This is a special case of the Smith-Waterman alignment that assumes that
the deletion and insertion costs are linear with number of incorrect words.
If align_full_hyp is True, then the traceback of the alignment
is started at the end of the hypothesis. This is when we want the
reference that aligns with the full hypothesis.
This differs from the normal Smith-Waterman alignment, where the traceback
is from the highest score in the alignment score matrix. This
can be obtained by setting align_full_hyp as False. This gets only the
sub-sequence of the hypothesis that best matches with a
sub-sequence of the reference.
Returns a list of tuples where each tuple has the format:
(ref_word, hyp_word, ref_word_from_index, hyp_word_from_index,
ref_word_to_index, hyp_word_to_index)
"""
output = []
ref_len = len(ref)
hyp_len = len(hyp)
bp = [[] for x in range(ref_len+1)]
# Score matrix of size (ref_len + 1) x (hyp_len + 1)
# The index m, n in this matrix corresponds to the score
# of the best matching sub-sequence pair between reference and hypothesis
# ending with the reference word ref[m-1] and hypothesis word hyp[n-1].
# If align_full_hyp is True, then the hypothesis sub-sequence is from
# the 0th word i.e. hyp[0].
H = [[] for x in range(ref_len+1)]
for ref_index in range(ref_len+1):
if align_full_hyp:
H[ref_index] = [-(hyp_len+2) for x in range(hyp_len+1)]
H[ref_index][0] = 0
else:
H[ref_index] = [0 for x in range(hyp_len+1)]
bp[ref_index] = [(0, 0) for x in range(hyp_len+1)]
if align_full_hyp and ref_index == 0:
for hyp_index in range(1, hyp_len+1):
H[0][hyp_index] = H[0][hyp_index-1] + ins_score
bp[ref_index][hyp_index] = (ref_index, hyp_index-1)
logger.debug(
"({0},{1}) -> ({2},{3}): {4}"
"".format(ref_index, hyp_index-1, ref_index, hyp_index,
H[ref_index][hyp_index]))
max_score = -float("inf")
max_score_element = (0, 0)
for ref_index in range(1, ref_len+1): # Reference
for hyp_index in range(1, hyp_len+1): # Hypothesis
sub_or_ok = (H[ref_index-1][hyp_index-1]
+ similarity_score_function(ref[ref_index-1],
hyp[hyp_index-1]))
if ((not align_full_hyp and sub_or_ok > 0)
or (align_full_hyp
and sub_or_ok >= H[ref_index][hyp_index])):
H[ref_index][hyp_index] = sub_or_ok
bp[ref_index][hyp_index] = (ref_index-1, hyp_index-1)
logger.debug(
"({0},{1}) -> ({2},{3}): {4} ({5},{6})"
"".format(ref_index-1, hyp_index-1, ref_index, hyp_index,
H[ref_index][hyp_index],
ref[ref_index-1], hyp[hyp_index-1]))
if H[ref_index-1][hyp_index] + del_score > H[ref_index][hyp_index]:
H[ref_index][hyp_index] = H[ref_index-1][hyp_index] + del_score
bp[ref_index][hyp_index] = (ref_index-1, hyp_index)
logger.debug(
"({0},{1}) -> ({2},{3}): {4}"
"".format(ref_index-1, hyp_index, ref_index, hyp_index,
H[ref_index][hyp_index]))
if H[ref_index][hyp_index-1] + ins_score > H[ref_index][hyp_index]:
H[ref_index][hyp_index] = H[ref_index][hyp_index-1] + ins_score
bp[ref_index][hyp_index] = (ref_index, hyp_index-1)
logger.debug(
"({0},{1}) -> ({2},{3}): {4}"
"".format(ref_index, hyp_index-1, ref_index, hyp_index,
H[ref_index][hyp_index]))
#if hyp_index == hyp_len and H[ref_index][hyp_index] >= max_score:
if ((not align_full_hyp or hyp_index == hyp_len)
and H[ref_index][hyp_index] >= max_score):
max_score = H[ref_index][hyp_index]
max_score_element = (ref_index, hyp_index)
ref_index, hyp_index = max_score_element
score = max_score
logger.debug("Alignment score: %s for (%d, %d)",
score, ref_index, hyp_index)
while ((not align_full_hyp and score >= 0)
or (align_full_hyp and hyp_index > 0)):
try:
prev_ref_index, prev_hyp_index = bp[ref_index][hyp_index]
if ((prev_ref_index, prev_hyp_index) == (ref_index, hyp_index)
or (prev_ref_index, prev_hyp_index) == (0, 0)):
ref_index, hyp_index = (prev_ref_index, prev_hyp_index)
score = H[ref_index][hyp_index]
break
if (ref_index == prev_ref_index + 1
and hyp_index == prev_hyp_index + 1):
# Substitution or correct
output.append(
(ref[ref_index-1] if ref_index > 0 else eps_symbol,
hyp[hyp_index-1] if hyp_index > 0 else eps_symbol,
prev_ref_index, prev_hyp_index, ref_index, hyp_index))
elif (prev_hyp_index == hyp_index):
# Deletion
assert prev_ref_index == ref_index - 1
output.append(
(ref[ref_index-1] if ref_index > 0 else eps_symbol,
eps_symbol,
prev_ref_index, prev_hyp_index, ref_index, hyp_index))
elif (prev_ref_index == ref_index):
# Insertion
assert prev_hyp_index == hyp_index - 1
output.append(
(eps_symbol,
hyp[hyp_index-1] if hyp_index > 0 else eps_symbol,
prev_ref_index, prev_hyp_index, ref_index, hyp_index))
else:
raise RuntimeError
ref_index, hyp_index = (prev_ref_index, prev_hyp_index)
score = H[ref_index][hyp_index]
except Exception:
logger.error("Unexpected entry (%d,%d) -> (%d,%d), %s, %s",
prev_ref_index, prev_hyp_index, ref_index, hyp_index,
ref[prev_ref_index], hyp[prev_hyp_index])
raise RuntimeError("Unexpected result: Bug in code!!")
assert (align_full_hyp or score == 0)
output.reverse()
if verbose_level > 2:
for ref_index in range(ref_len+1):
for hyp_index in range(hyp_len+1):
print ("{0} ".format(H[ref_index][hyp_index]), end='',
file=sys.stderr)
print ("", file=sys.stderr)
logger.debug("Aligned output:")
logger.debug(" - ".join(["({0},{1})".format(x[4], x[5])
for x in output]))
logger.debug("REF: ")
logger.debug(" ".join(str(x[0]) for x in output))
logger.debug("HYP:")
logger.debug(" ".join(str(x[1]) for x in output))
return (output, max_score)
def print_alignment(recording, alignment, out_file_handle):
out_text = [recording]
for line in alignment:
try:
out_text.append(line[1])
except Exception:
logger.error("Something wrong with alignment. "
"Invalid line {0}".format(line))
raise
print (" ".join(out_text), file=out_file_handle)
def get_edit_type(hyp_word, ref_word, duration=-1, eps_symbol='<eps>',
oov_word=None, symbol_table=None):
if hyp_word == ref_word and hyp_word != eps_symbol:
return 'cor'
if hyp_word != eps_symbol and ref_word == eps_symbol:
return 'ins'
if hyp_word == eps_symbol and ref_word != eps_symbol and duration == 0.0:
return 'del'
if (hyp_word == oov_word and symbol_table is not None
and len(symbol_table) > 0 and ref_word not in symbol_table):
return 'cor' # this special case is treated as correct
if hyp_word == eps_symbol and ref_word == eps_symbol and duration > 0.0:
# silence in hypothesis; we don't match this up with any reference
# word.
return 'sil'
# The following assertion is because, based on how get_ctm_edits()
# works, we shouldn't hit this case.
assert hyp_word != eps_symbol and ref_word != eps_symbol
return 'sub'
def get_ctm_edits(alignment_output, ctm_array, eps_symbol="<eps>",
oov_word=None, symbol_table=None):
"""
This function takes two lists
alignment_output = The output of smith_waterman_alignment() which is a
list of tuples (ref_word, hyp_word, ref_word_from_index,
hyp_word_from_index, ref_word_to_index, hyp_word_to_index)
ctm_array = [ [ start1, duration1, hyp_word1, confidence1 ], ... ]
and pads them with new list elements so that the entries 'match up'.
Returns CTM edits lines, which are CTM lines appended with reference word
and edit type.
What we are aiming for is that for each i, ctm_array[i][2] ==
alignment_output[i][1]. The reasons why this is not automatically true
are:
(1) There may be insertions in the hypothesis sequence that are not
aligned with any reference words in the beginning of the
alignment_output.
(2) There may be deletions in the end of the alignment_output that
do not correspond to any additional hypothesis CTM lines.
We introduce suitable entries in to alignment_output and ctm_array as
necessary to make them 'match up'.
"""
ctm_edits = []
ali_len = len(alignment_output)
ctm_len = len(ctm_array)
ali_pos = 0
ctm_pos = 0
# current_time is the end of the last ctm segment we processesed.
current_time = ctm_array[0][0] if ctm_len > 0 else 0.0
for (ref_word, hyp_word, ref_prev_i, hyp_prev_i,
ref_i, hyp_i) in alignment_output:
try:
ctm_pos = hyp_prev_i
# This is true because we cannot have errors at the end because
# that will decrease the smith-waterman alignment score.
assert ctm_pos < ctm_len
assert len(ctm_array[ctm_pos]) == 4
if hyp_prev_i == hyp_i:
assert hyp_word == eps_symbol
# These are deletions as there are no CTM entries
# corresponding to these alignments.
edit_type = get_edit_type(
hyp_word=eps_symbol, ref_word=ref_word,
duration=0.0, eps_symbol=eps_symbol,
oov_word=oov_word, symbol_table=symbol_table)
ctm_line = [current_time, 0.0, eps_symbol, 1.0,
ref_word, edit_type]
ctm_edits.append(ctm_line)
else:
assert hyp_i == hyp_prev_i + 1
assert hyp_word == ctm_array[ctm_pos][2]
# This is the normal case, where there are 2 entries where
# they hyp-words match up.
ctm_line = list(ctm_array[ctm_pos])
if hyp_word == eps_symbol and ref_word != eps_symbol:
# This is a silence in hypothesis aligned with a reference
# word. We split this into two ctm edit lines where the
# first one is a deletion of duration 0 and the second
# one is a silence of duration given by the ctm line.
edit_type = get_edit_type(
hyp_word=eps_symbol, ref_word=ref_word,
duration=0.0, eps_symbol=eps_symbol,
oov_word=oov_word, symbol_table=symbol_table)
assert edit_type == 'del'
ctm_edits.append([current_time, 0.0, eps_symbol, 1.0,
ref_word, edit_type])
edit_type = get_edit_type(
hyp_word=eps_symbol, ref_word=eps_symbol,
duration=ctm_line[1], eps_symbol=eps_symbol,
oov_word=oov_word, symbol_table=symbol_table)
assert edit_type == 'sil'
ctm_line.extend([eps_symbol, edit_type])
ctm_edits.append(ctm_line)
else:
edit_type = get_edit_type(
hyp_word=hyp_word, ref_word=ref_word,
duration=ctm_line[1], eps_symbol=eps_symbol,
oov_word=oov_word, symbol_table=symbol_table)
ctm_line.extend([ref_word, edit_type])
ctm_edits.append(ctm_line)
current_time = (ctm_array[ctm_pos][0]
+ ctm_array[ctm_pos][1])
except Exception:
logger.error("Could not get ctm edits for "
"edits@{edits_pos} = {0}, ctm@{ctm_pos} = {1}".format(
("NONE" if ali_pos >= ali_len
else alignment_output[ali_pos]),
("NONE" if ctm_pos >= ctm_len
else ctm_array[ctm_pos]),
edits_pos=ali_pos, ctm_pos=ctm_pos))
logger.error("alignment = {0}".format(alignment_output))
raise
return ctm_edits
def ctm_line_to_string(ctm_line):
if len(ctm_line) != 8:
raise RuntimeError("len(ctm_line) expected to be {0}. "
"Invalid line {1}".format(8, ctm_line))
return " ".join([str(x) for x in ctm_line])
def test_alignment(align_full_hyp):
hyp = "GCCAT"
ref = "AGCACACA"
verbose = 3
logger.info("REF: %s", ref)
logger.info("HYP: %s", hyp)
output, score = smith_waterman_alignment(
ref, hyp, similarity_score_function=lambda x, y: 2 if (x == y) else -1,
del_score=-1, ins_score=-1, eps_symbol="-", align_full_hyp=align_full_hyp)
print_alignment("Alignment", output, out_file_handle=sys.stderr)
def run(args):
if args.debug_only:
test_alignment(args.align_full_hyp)
raise SystemExit("Exiting since --debug-only was true")
def similarity_score_function(x, y):
if x == y:
return args.correct_score
return -args.substitution_penalty
del_score = -args.deletion_penalty
ins_score = -args.insertion_penalty
reco2file_and_channel = {}
file_and_channel2reco = {}
if args.reco2file_and_channel is not None:
for line in args.reco2file_and_channel:
parts = line.strip().split()
reco2file_and_channel[parts[0]] = (parts[1], parts[2])
file_and_channel2reco[(parts[1], parts[2])] = parts[0]
args.reco2file_and_channel.close()
else:
file_and_channel2reco = None
symbol_table = {}
if args.symbol_table is not None:
for line in args.symbol_table:
parts = line.strip().split()
symbol_table[parts[0]] = int(parts[1])
args.symbol_table.close()
if args.hyp_format == "Text":
hyp_lines = {key: value
for (key, value) in read_text(args.hyp_in_file)}
else:
hyp_lines = {key: value
for (key, value) in read_ctm(args.hyp_in_file,
file_and_channel2reco)}
num_err = 0
num_done = 0
for reco, ref_text in read_text(args.ref_in_file):
try:
if reco not in hyp_lines:
num_err += 1
raise Warning("Could not find recording {0} "
"in hypothesis {1}".format(
reco, args.hyp_in_file.name))
continue
if args.hyp_format == "CTM":
hyp_array = [x[2] for x in hyp_lines[reco]]
else:
hyp_array = hyp_lines[reco]
if args.reco2file_and_channel is None:
reco2file_and_channel[reco] = (reco, "1")
logger.debug("Running Smith-Waterman alignment for %s", reco)
output, score = smith_waterman_alignment(
ref_text, hyp_array, eps_symbol=args.eps_symbol,
similarity_score_function=similarity_score_function,
del_score=del_score, ins_score=ins_score,
align_full_hyp=args.align_full_hyp)
if args.hyp_format == "CTM":
ctm_edits = get_ctm_edits(output, hyp_lines[reco],
eps_symbol=args.eps_symbol,
oov_word=args.oov_word,
symbol_table=symbol_table)
for line in ctm_edits:
ctm_line = list(reco2file_and_channel[reco])
ctm_line.extend(line)
print(ctm_line_to_string(ctm_line),
file=args.alignment_out_file)
else:
print_alignment(
reco, output, out_file_handle=args.alignment_out_file)
num_done += 1
except:
logger.error("Alignment failed for recording {0} "
"with ref = {1} and hyp = {2}".format(
reco, " ".join(ref_text),
" ".join(hyp_array)))
raise
logger.info("Processed %d recordings; failed with %d", num_done, num_err)
if num_done == 0:
raise RuntimeError("Processed 0 recordings.")
def main():
args = get_args()
try:
run(args)
except Exception:
logger.error("Failed to align ref and hypotheses; "
"got exception ", exc_info=True)
raise SystemExit(1)
finally:
if args.reco2file_and_channel is not None:
args.reco2file_and_channel.close()
args.ref_in_file.close()
args.hyp_in_file.close()
args.alignment_out_file.close()
if __name__ == '__main__':
main()