align_ctm_ref.py 25.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
#! /usr/bin/env python

# Copyright 2016    Vimal Manohar
# Apache 2.0.

"""This module aligns a hypothesis (CTM or text) with a reference to
find the best matching sub-sequence in the reference for the hypothesis
using Smith-Waterman like alignment.

e.g.: align_ctm_ref.py --hyp-format=CTM --ref=data/train/text --hyp=foo/ctm
        --output=foo/ctm_edits
"""

from __future__ import print_function
import argparse
import logging
import sys

sys.path.insert(0, 'steps')
import libs.common as common_lib

logger = logging.getLogger(__name__)
handler = logging.StreamHandler()
formatter = logging.Formatter("%(asctime)s [%(pathname)s:%(lineno)s - "
                              "%(funcName)s - %(levelname)s ] %(message)s")
handler.setFormatter(formatter)
logger.setLevel(logging.DEBUG)

verbose_level = 0


def get_args():
    parser = argparse.ArgumentParser(description="""
    This module aligns a hypothesis (CTM or text) with a reference to find the
    best matching sub-sequence in the reference for the hypothesis using
    Smith-Waterman like alignment.

    e.g.: align_ctm_ref.py --align-full-hyp=false --hyp-format=CTM
    --reco2file-and-channel=data/foo/reco2file_and_channel --ref=data/train/text
    --hyp=foo/ctm --output=foo/ctm_edits
    """)

    parser.add_argument("--hyp-format", type=str, choices=["Text", "CTM"],
                        default="CTM",
                        help="Format used for the hypothesis")
    parser.add_argument("--reco2file-and-channel", type=argparse.FileType('r'),
                        help="""reco2file_and_channel file.
                        This will be used to match references that are usually
                        indexed by the recording-id with the CTM lines that have
                        file and channel. This option is typically not
                        required.""")
    parser.add_argument("--eps-symbol", type=str, default="-",
                        help="Symbol used to contain alignment "
                        "to empty symbol")
    parser.add_argument("--oov-word", type=str, default=None,
                        action=common_lib.NullstrToNoneAction,
                        help="Symbol of OOV word in hypothesis")
    parser.add_argument("--symbol-table", type=argparse.FileType('r'),
                        help="""Symbol table for words in vocabulary. Used
                        to determine if a word is a OOV or not""")

    parser.add_argument("--correct-score", type=int, default=1,
                        help="Score for correct matches")
    parser.add_argument("--substitution-penalty", type=int, default=1,
                        help="Penalty for substitution errors")
    parser.add_argument("--deletion-penalty", type=int, default=1,
                        help="Penalty for deletion errors")
    parser.add_argument("--insertion-penalty", type=int, default=1,
                        help="Penalty for insertion errors")

    parser.add_argument("--align-full-hyp", type=str,
                        action=common_lib.StrToBoolAction,
                        choices=["true", "false"], default=True,
                        help="""Align full hypothesis i.e. trackback from
                        the end to get the alignment. This is different
                        from the normal Smith-Waterman alignment, where the
                        traceback will be from the maximum score.""")

    parser.add_argument("--debug-only", type=str, default="false",
                        choices=["true", "false"],
                        help="Run test functions only")
    parser.add_argument("--verbose", type=int, default=0,
                        choices=[0, 1, 2, 3],
                        help="Use larger value for more verbose logging.")

    parser.add_argument("--ref", dest='ref_in_file',
                        type=argparse.FileType('r'), required=True,
                        help="Reference text file")
    parser.add_argument("--hyp", dest='hyp_in_file', required=True,
                        type=argparse.FileType('r'),
                        help="Hypothesis text or CTM file")
    parser.add_argument("--output", dest='alignment_out_file', required=True,
                        type=argparse.FileType('w'),
                        help="""File to write output alignment.
                        If hyp-format=CTM, then the output is in the form of
                        CTM, but with two additional columns of Edit-type and
                        Reference-word matched to the hypothesis.""")

    args = parser.parse_args()

    args.debug_only = bool(args.debug_only == "true")

    global verbose_level
    verbose_level = args.verbose
    if args.verbose > 2:
        handler.setLevel(logging.DEBUG)
    else:
        handler.setLevel(logging.INFO)
    logger.addHandler(handler)

    return args


def read_text(text_file):
    """Reads a kaldi-format text file and yield elements of a dictionary
        { utterane_id : transcript (as a list of words) }

    The first-column of the text file is the utterance-id, which will be
    used as the key to index the dictionary elements.
    The remaining columns of the file are text of the transcript and they are
    returned as a list of words.
    """
    for line in text_file:
        parts = line.strip().split()
        if len(parts) < 1:
            raise RuntimeError(
                "Did not get enough columns; line {0} in {1}"
                "".format(line, text_file.name))
        elif len(parts) == 1:
            logger.warn("Empty transcript for utterance %s in %s",
                        parts[0], text_file.name)
            yield parts[0], []
        else:
            yield parts[0], parts[1:]
    text_file.close()


def read_ctm(ctm_file, file_and_channel2reco=None):
    """Reads a CTM file and yields elements of a dictionary
        { utterance-id : CTM for the utterance },
    where CTM for the utterance is stored as a list of lines
    from a CTM correponding to the utterance.

    Note: *_reco in the variables usually correspond to utterances rather
    than recordings.
    """
    prev_reco = ""
    ctm_lines = []
    for line in ctm_file:
        try:
            parts = line.strip().split()
            parts[2] = float(parts[2])
            parts[3] = float(parts[3])

            if len(parts) == 5:
                parts.append(1.0)   # confidence defaults to 1.0.

            if len(parts) != 6:
                raise ValueError("CTM must have 6 fields.")

            if file_and_channel2reco is None:
                reco = parts[0]
                if parts[1] != '1':
                    raise ValueError("Channel should be 1, "
                                     "got {0}".format(parts[1]))
            else:
                reco = file_and_channel2reco[(parts[0], parts[1])]
            if prev_reco != "" and reco != prev_reco:
                # New recording
                yield prev_reco, ctm_lines
                ctm_lines = []
            ctm_lines.append(parts[2:])
            prev_reco = reco
        except Exception:
            logger.error("Error in processing CTM line {0}".format(line))
            raise
    if prev_reco != "" and len(ctm_lines) > 0:
        yield prev_reco, ctm_lines
    ctm_file.close()


def smith_waterman_alignment(ref, hyp, similarity_score_function,
                             del_score, ins_score,
                             eps_symbol="<eps>", align_full_hyp=True):
    """Does Smith-Waterman alignment of reference sequence and hypothesis
    sequence.
    This is a special case of the Smith-Waterman alignment that assumes that
    the deletion and insertion costs are linear with number of incorrect words.

    If align_full_hyp is True, then the traceback of the alignment
    is started at the end of the hypothesis. This is when we want the
    reference that aligns with the full hypothesis.
    This differs from the normal Smith-Waterman alignment, where the traceback
    is from the highest score in the alignment score matrix. This
    can be obtained by setting align_full_hyp as False. This gets only the
    sub-sequence of the hypothesis that best matches with a
    sub-sequence of the reference.

    Returns a list of tuples where each tuple has the format:
        (ref_word, hyp_word, ref_word_from_index, hyp_word_from_index,
         ref_word_to_index, hyp_word_to_index)
    """
    output = []

    ref_len = len(ref)
    hyp_len = len(hyp)

    bp = [[] for x in range(ref_len+1)]

    # Score matrix of size (ref_len + 1) x (hyp_len + 1)
    # The index m, n in this matrix corresponds to the score
    # of the best matching sub-sequence pair between reference and hypothesis
    # ending with the reference word ref[m-1] and hypothesis word hyp[n-1].
    # If align_full_hyp is True, then the hypothesis sub-sequence is from
    # the 0th word i.e. hyp[0].
    H = [[] for x in range(ref_len+1)]

    for ref_index in range(ref_len+1):
        if align_full_hyp:
            H[ref_index] = [-(hyp_len+2) for x in range(hyp_len+1)]
            H[ref_index][0] = 0
        else:
            H[ref_index] = [0 for x in range(hyp_len+1)]
        bp[ref_index] = [(0, 0) for x in range(hyp_len+1)]

        if align_full_hyp and ref_index == 0:
            for hyp_index in range(1, hyp_len+1):
                H[0][hyp_index] = H[0][hyp_index-1] + ins_score
                bp[ref_index][hyp_index] = (ref_index, hyp_index-1)
                logger.debug(
                    "({0},{1}) -> ({2},{3}): {4}"
                    "".format(ref_index, hyp_index-1, ref_index, hyp_index,
                              H[ref_index][hyp_index]))

    max_score = -float("inf")
    max_score_element = (0, 0)

    for ref_index in range(1, ref_len+1):     # Reference
        for hyp_index in range(1, hyp_len+1):     # Hypothesis
            sub_or_ok = (H[ref_index-1][hyp_index-1]
                         + similarity_score_function(ref[ref_index-1],
                                                     hyp[hyp_index-1]))

            if ((not align_full_hyp and sub_or_ok > 0)
                    or (align_full_hyp
                        and sub_or_ok >= H[ref_index][hyp_index])):
                H[ref_index][hyp_index] = sub_or_ok
                bp[ref_index][hyp_index] = (ref_index-1, hyp_index-1)
                logger.debug(
                    "({0},{1}) -> ({2},{3}): {4} ({5},{6})"
                    "".format(ref_index-1, hyp_index-1, ref_index, hyp_index,
                              H[ref_index][hyp_index],
                              ref[ref_index-1], hyp[hyp_index-1]))

            if H[ref_index-1][hyp_index] + del_score > H[ref_index][hyp_index]:
                H[ref_index][hyp_index] = H[ref_index-1][hyp_index] + del_score
                bp[ref_index][hyp_index] = (ref_index-1, hyp_index)
                logger.debug(
                    "({0},{1}) -> ({2},{3}): {4}"
                    "".format(ref_index-1, hyp_index, ref_index, hyp_index,
                              H[ref_index][hyp_index]))

            if H[ref_index][hyp_index-1] + ins_score > H[ref_index][hyp_index]:
                H[ref_index][hyp_index] = H[ref_index][hyp_index-1] + ins_score
                bp[ref_index][hyp_index] = (ref_index, hyp_index-1)
                logger.debug(
                    "({0},{1}) -> ({2},{3}): {4}"
                    "".format(ref_index, hyp_index-1, ref_index, hyp_index,
                              H[ref_index][hyp_index]))

            #if hyp_index == hyp_len and H[ref_index][hyp_index] >= max_score:
            if ((not align_full_hyp or hyp_index == hyp_len)
                    and H[ref_index][hyp_index] >= max_score):
                max_score = H[ref_index][hyp_index]
                max_score_element = (ref_index, hyp_index)

    ref_index, hyp_index = max_score_element
    score = max_score
    logger.debug("Alignment score: %s for (%d, %d)",
                 score, ref_index, hyp_index)

    while ((not align_full_hyp and score >= 0)
           or (align_full_hyp and hyp_index > 0)):
        try:
            prev_ref_index, prev_hyp_index = bp[ref_index][hyp_index]

            if ((prev_ref_index, prev_hyp_index) == (ref_index, hyp_index)
                    or (prev_ref_index, prev_hyp_index) == (0, 0)):
                ref_index, hyp_index = (prev_ref_index, prev_hyp_index)
                score = H[ref_index][hyp_index]
                break

            if (ref_index == prev_ref_index + 1
                    and hyp_index == prev_hyp_index + 1):
                # Substitution or correct
                output.append(
                    (ref[ref_index-1] if ref_index > 0 else eps_symbol,
                     hyp[hyp_index-1] if hyp_index > 0 else eps_symbol,
                     prev_ref_index, prev_hyp_index, ref_index, hyp_index))
            elif (prev_hyp_index == hyp_index):
                # Deletion
                assert prev_ref_index == ref_index - 1
                output.append(
                    (ref[ref_index-1] if ref_index > 0 else eps_symbol,
                     eps_symbol,
                     prev_ref_index, prev_hyp_index, ref_index, hyp_index))
            elif (prev_ref_index == ref_index):
                # Insertion
                assert prev_hyp_index == hyp_index - 1
                output.append(
                    (eps_symbol,
                     hyp[hyp_index-1] if hyp_index > 0 else eps_symbol,
                     prev_ref_index, prev_hyp_index, ref_index, hyp_index))
            else:
                raise RuntimeError

            ref_index, hyp_index = (prev_ref_index, prev_hyp_index)
            score = H[ref_index][hyp_index]
        except Exception:
            logger.error("Unexpected entry (%d,%d) -> (%d,%d), %s, %s",
                         prev_ref_index, prev_hyp_index, ref_index, hyp_index,
                         ref[prev_ref_index], hyp[prev_hyp_index])
            raise RuntimeError("Unexpected result: Bug in code!!")

    assert (align_full_hyp or score == 0)

    output.reverse()

    if verbose_level > 2:
        for ref_index in range(ref_len+1):
            for hyp_index in range(hyp_len+1):
                print ("{0} ".format(H[ref_index][hyp_index]), end='',
                       file=sys.stderr)
            print ("", file=sys.stderr)

    logger.debug("Aligned output:")
    logger.debug("  -  ".join(["({0},{1})".format(x[4], x[5])
                               for x in output]))
    logger.debug("REF: ")
    logger.debug("    ".join(str(x[0]) for x in output))
    logger.debug("HYP:")
    logger.debug("    ".join(str(x[1]) for x in output))

    return (output, max_score)


def print_alignment(recording, alignment, out_file_handle):
    out_text = [recording]
    for line in alignment:
        try:
            out_text.append(line[1])
        except Exception:
            logger.error("Something wrong with alignment. "
                         "Invalid line {0}".format(line))
            raise
    print (" ".join(out_text), file=out_file_handle)


def get_edit_type(hyp_word, ref_word, duration=-1, eps_symbol='<eps>',
                  oov_word=None, symbol_table=None):
    if hyp_word == ref_word and hyp_word != eps_symbol:
        return 'cor'
    if hyp_word != eps_symbol and ref_word == eps_symbol:
        return 'ins'
    if hyp_word == eps_symbol and ref_word != eps_symbol and duration == 0.0:
        return 'del'
    if (hyp_word == oov_word and symbol_table is not None
            and len(symbol_table) > 0 and ref_word not in symbol_table):
        return 'cor'    # this special case is treated as correct
    if hyp_word == eps_symbol and ref_word == eps_symbol and duration > 0.0:
        # silence in hypothesis; we don't match this up with any reference
        # word.
        return 'sil'
    # The following assertion is because, based on how get_ctm_edits()
    # works, we shouldn't hit this case.
    assert hyp_word != eps_symbol and ref_word != eps_symbol
    return 'sub'


def get_ctm_edits(alignment_output, ctm_array, eps_symbol="<eps>",
                  oov_word=None, symbol_table=None):
    """
    This function takes two lists
        alignment_output = The output of smith_waterman_alignment() which is a
            list of tuples (ref_word, hyp_word, ref_word_from_index,
            hyp_word_from_index, ref_word_to_index, hyp_word_to_index)
        ctm_array = [ [ start1, duration1, hyp_word1, confidence1 ], ... ]
    and pads them with new list elements so that the entries 'match up'.

    Returns CTM edits lines, which are CTM lines appended with reference word
    and edit type.

    What we are aiming for is that for each i, ctm_array[i][2] ==
    alignment_output[i][1].  The reasons why this is not automatically true
    are:

     (1) There may be insertions in the hypothesis sequence that are not
         aligned with any reference words in the beginning of the
         alignment_output.
     (2) There may be deletions in the end of the alignment_output that
         do not correspond to any additional hypothesis CTM lines.

    We introduce suitable entries in to alignment_output and ctm_array as
    necessary to make them 'match up'.
    """
    ctm_edits = []
    ali_len = len(alignment_output)
    ctm_len = len(ctm_array)
    ali_pos = 0
    ctm_pos = 0

    # current_time is the end of the last ctm segment we processesed.
    current_time = ctm_array[0][0] if ctm_len > 0 else 0.0

    for (ref_word, hyp_word, ref_prev_i, hyp_prev_i,
         ref_i, hyp_i) in alignment_output:
        try:
            ctm_pos = hyp_prev_i
            # This is true because we cannot have errors at the end because
            # that will decrease the smith-waterman alignment score.
            assert ctm_pos < ctm_len
            assert len(ctm_array[ctm_pos]) == 4

            if hyp_prev_i == hyp_i:
                assert hyp_word == eps_symbol
                # These are deletions as there are no CTM entries
                # corresponding to these alignments.
                edit_type = get_edit_type(
                    hyp_word=eps_symbol, ref_word=ref_word,
                    duration=0.0, eps_symbol=eps_symbol,
                    oov_word=oov_word, symbol_table=symbol_table)
                ctm_line = [current_time, 0.0, eps_symbol, 1.0,
                            ref_word, edit_type]
                ctm_edits.append(ctm_line)
            else:
                assert hyp_i == hyp_prev_i + 1
                assert hyp_word == ctm_array[ctm_pos][2]
                # This is the normal case, where there are 2 entries where
                # they hyp-words match up.
                ctm_line = list(ctm_array[ctm_pos])
                if hyp_word == eps_symbol and ref_word != eps_symbol:
                    # This is a silence in hypothesis aligned with a reference
                    # word. We split this into two ctm edit lines where the
                    # first one is a deletion of duration 0 and the second
                    # one is a silence of duration given by the ctm line.
                    edit_type = get_edit_type(
                        hyp_word=eps_symbol, ref_word=ref_word,
                        duration=0.0, eps_symbol=eps_symbol,
                        oov_word=oov_word, symbol_table=symbol_table)
                    assert edit_type == 'del'
                    ctm_edits.append([current_time, 0.0, eps_symbol, 1.0,
                                      ref_word, edit_type])

                    edit_type = get_edit_type(
                        hyp_word=eps_symbol, ref_word=eps_symbol,
                        duration=ctm_line[1], eps_symbol=eps_symbol,
                        oov_word=oov_word, symbol_table=symbol_table)
                    assert edit_type == 'sil'
                    ctm_line.extend([eps_symbol, edit_type])
                    ctm_edits.append(ctm_line)
                else:
                    edit_type = get_edit_type(
                        hyp_word=hyp_word, ref_word=ref_word,
                        duration=ctm_line[1], eps_symbol=eps_symbol,
                        oov_word=oov_word, symbol_table=symbol_table)
                    ctm_line.extend([ref_word, edit_type])
                    ctm_edits.append(ctm_line)
                current_time = (ctm_array[ctm_pos][0]
                                + ctm_array[ctm_pos][1])
        except Exception:
            logger.error("Could not get ctm edits for "
                         "edits@{edits_pos} = {0}, ctm@{ctm_pos} = {1}".format(
                            ("NONE" if ali_pos >= ali_len
                             else alignment_output[ali_pos]),
                            ("NONE" if ctm_pos >= ctm_len
                             else ctm_array[ctm_pos]),
                            edits_pos=ali_pos, ctm_pos=ctm_pos))
            logger.error("alignment = {0}".format(alignment_output))
            raise
    return ctm_edits


def ctm_line_to_string(ctm_line):
    if len(ctm_line) != 8:
        raise RuntimeError("len(ctm_line) expected to be {0}. "
                           "Invalid line {1}".format(8, ctm_line))

    return " ".join([str(x) for x in ctm_line])


def test_alignment(align_full_hyp):
    hyp = "GCCAT"
    ref = "AGCACACA"

    verbose = 3
    logger.info("REF: %s", ref)
    logger.info("HYP: %s", hyp)

    output, score = smith_waterman_alignment(
        ref, hyp, similarity_score_function=lambda x, y: 2 if (x == y) else -1,
        del_score=-1, ins_score=-1, eps_symbol="-", align_full_hyp=align_full_hyp)

    print_alignment("Alignment", output, out_file_handle=sys.stderr)


def run(args):
    if args.debug_only:
        test_alignment(args.align_full_hyp)
        raise SystemExit("Exiting since --debug-only was true")

    def similarity_score_function(x, y):
        if x == y:
            return args.correct_score
        return -args.substitution_penalty

    del_score = -args.deletion_penalty
    ins_score = -args.insertion_penalty

    reco2file_and_channel = {}
    file_and_channel2reco = {}

    if args.reco2file_and_channel is not None:
        for line in args.reco2file_and_channel:
            parts = line.strip().split()

            reco2file_and_channel[parts[0]] = (parts[1], parts[2])
            file_and_channel2reco[(parts[1], parts[2])] = parts[0]
        args.reco2file_and_channel.close()
    else:
        file_and_channel2reco = None

    symbol_table = {}
    if args.symbol_table is not None:
        for line in args.symbol_table:
            parts = line.strip().split()
            symbol_table[parts[0]] = int(parts[1])
        args.symbol_table.close()

    if args.hyp_format == "Text":
        hyp_lines = {key: value
                     for (key, value) in read_text(args.hyp_in_file)}
    else:
        hyp_lines = {key: value
                     for (key, value) in read_ctm(args.hyp_in_file,
                                                  file_and_channel2reco)}

    num_err = 0
    num_done = 0
    for reco, ref_text in read_text(args.ref_in_file):
        try:
            if reco not in hyp_lines:
                num_err += 1
                raise Warning("Could not find recording {0} "
                              "in hypothesis {1}".format(
                                  reco, args.hyp_in_file.name))
                continue

            if args.hyp_format == "CTM":
                hyp_array = [x[2] for x in hyp_lines[reco]]
            else:
                hyp_array = hyp_lines[reco]

            if args.reco2file_and_channel is None:
                reco2file_and_channel[reco] = (reco, "1")

            logger.debug("Running Smith-Waterman alignment for %s", reco)

            output, score = smith_waterman_alignment(
                ref_text, hyp_array, eps_symbol=args.eps_symbol,
                similarity_score_function=similarity_score_function,
                del_score=del_score, ins_score=ins_score,
                align_full_hyp=args.align_full_hyp)

            if args.hyp_format == "CTM":
                ctm_edits = get_ctm_edits(output, hyp_lines[reco],
                                          eps_symbol=args.eps_symbol,
                                          oov_word=args.oov_word,
                                          symbol_table=symbol_table)
                for line in ctm_edits:
                    ctm_line = list(reco2file_and_channel[reco])
                    ctm_line.extend(line)
                    print(ctm_line_to_string(ctm_line),
                          file=args.alignment_out_file)
            else:
                print_alignment(
                    reco, output, out_file_handle=args.alignment_out_file)
            num_done += 1
        except:
            logger.error("Alignment failed for recording {0} "
                         "with ref = {1} and hyp = {2}".format(
                             reco, " ".join(ref_text),
                             " ".join(hyp_array)))
            raise

    logger.info("Processed %d recordings; failed with %d", num_done, num_err)

    if num_done == 0:
        raise RuntimeError("Processed 0 recordings.")


def main():
    args = get_args()

    try:
        run(args)
    except Exception:
        logger.error("Failed to align ref and hypotheses; "
                     "got exception ", exc_info=True)
        raise SystemExit(1)
    finally:
        if args.reco2file_and_channel is not None:
            args.reco2file_and_channel.close()
        args.ref_in_file.close()
        args.hyp_in_file.close()
        args.alignment_out_file.close()


if __name__ == '__main__':
    main()