decode_sgmm2.sh
10.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#!/bin/bash
# Copyright 2012 Johns Hopkins University (Author: Daniel Povey). Apache 2.0.
# This script does decoding with an SGMM system, with speaker vectors.
# If the SGMM system was
# built on top of fMLLR transforms from a conventional system, you should
# provide the --transform-dir option.
# Begin configuration section.
stage=1
transform_dir= # dir to find fMLLR transforms.
nj=4 # number of decoding jobs.
acwt=0.1 # Just a default value, used for adaptation and beam-pruning..
cmd=run.pl
beam=13.0
gselect=15 # Number of Gaussian-selection indices for SGMMs. [Note:
# the first_pass_gselect variable is used for the 1st pass of
# decoding and can be tighter.
first_pass_gselect=3 # Use a smaller number of Gaussian-selection indices in
# the 1st pass of decoding (lattice generation).
max_active=7000
max_mem=50000000
#WARNING: This option is renamed lattice_beam (it was renamed to follow the naming
# in the other scripts
lattice_beam=6.0 # Beam we use in lattice generation.
vecs_beam=4.0 # Beam we use to prune lattices while getting posteriors for
# speaker-vector computation. Can be quite tight (actually we could
# probably just do best-path.
use_fmllr=false
fmllr_iters=10
fmllr_min_count=1000
num_threads=1 # if >1, will use gmm-latgen-faster-parallel
parallel_opts= # ignored now.
skip_scoring=false
scoring_opts=
# note: there are no more min-lmwt and max-lmwt options, instead use
# e.g. --scoring-opts "--min-lmwt 1 --max-lmwt 20"
# End configuration section.
echo "$0 $@" # Print the command line for logging
[ -f ./path.sh ] && . ./path.sh; # source the path.
. parse_options.sh || exit 1;
if [ $# -ne 3 ]; then
echo "Usage: steps/decode_sgmm2.sh [options] <graph-dir> <data-dir> <decode-dir>"
echo " e.g.: steps/decode_sgmm2.sh --transform-dir exp/tri3b/decode_dev93_tgpr \\"
echo " exp/sgmm3a/graph_tgpr data/test_dev93 exp/sgmm3a/decode_dev93_tgpr"
echo "main options (for others, see top of script file)"
echo " --transform-dir <decoding-dir> # directory of previous decoding"
echo " # where we can find transforms for SAT systems."
echo " --config <config-file> # config containing options"
echo " --nj <nj> # number of parallel jobs"
echo " --cmd <cmd> # Command to run in parallel with"
echo " --beam <beam> # Decoding beam; default 13.0"
exit 1;
fi
graphdir=$1
data=$2
dir=$3
srcdir=`dirname $dir`; # Assume model directory one level up from decoding directory.
for f in $graphdir/HCLG.fst $data/feats.scp $srcdir/final.mdl; do
[ ! -f $f ] && echo "$0: no such file $f" && exit 1;
done
sdata=$data/split$nj;
silphonelist=`cat $graphdir/phones/silence.csl` || exit 1
gselect_opt="--gselect=ark,s,cs:gunzip -c $dir/gselect.JOB.gz|"
gselect_opt_1stpass="$gselect_opt copy-gselect --n=$first_pass_gselect ark:- ark:- |"
mkdir -p $dir/log
[[ -d $sdata && $data/feats.scp -ot $sdata ]] || split_data.sh $data $nj || exit 1;
echo $nj > $dir/num_jobs
splice_opts=`cat $srcdir/splice_opts 2>/dev/null` # frame-splicing options.
cmvn_opts=`cat $srcdir/cmvn_opts 2>/dev/null`
thread_string=
[ $num_threads -gt 1 ] && thread_string="-parallel --num-threads=$num_threads"
## Set up features.
if [ -f $srcdir/final.mat ]; then feat_type=lda; else feat_type=delta; fi
echo "$0: feature type is $feat_type"
case $feat_type in
delta) feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | add-deltas ark:- ark:- |";;
lda) feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |"
;;
*) echo "$0: invalid feature type $feat_type" && exit 1;
esac
if [ ! -z "$transform_dir" ]; then
[ "$nj" -ne "`cat $transform_dir/num_jobs`" ] \
&& echo "$0: #jobs mismatch with transform-dir." && exit 1;
if [ -f $transform_dir/trans.1 ]; then
echo "$0: using transforms from $transform_dir"
feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$transform_dir/trans.JOB ark:- ark:- |"
elif [ -f $transform_dir/raw_trans.1 ]; then
feats="ark,s,cs:apply-cmvn $cmvn_opts --utt2spk=ark:$sdata/JOB/utt2spk scp:$sdata/JOB/cmvn.scp scp:$sdata/JOB/feats.scp ark:- | transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$transform_dir/raw_trans.JOB ark:- ark:- | splice-feats $splice_opts ark:- ark:- | transform-feats $srcdir/final.mat ark:- ark:- |"
else
echo "$0: no such file $transform_dir/trans.1 or $transform_dir/raw_trans.1, invalid --transform-dir option?"
exit 1;
fi
elif grep 'transform-feats --utt2spk' $srcdir/log/acc.0.1.log 2>/dev/null; then
echo "$0: **WARNING**: you seem to be using an SGMM system trained with transforms,"
echo " but you are not providing the --transform-dir option in test time."
fi
##
## Save Gaussian-selection info to disk.
# Note: we can use final.mdl regardless of whether there is an alignment model--
# they use the same UBM.
if [ $stage -le 1 ]; then
$cmd JOB=1:$nj $dir/log/gselect.JOB.log \
sgmm2-gselect --full-gmm-nbest=$gselect $srcdir/final.mdl \
"$feats" "ark:|gzip -c >$dir/gselect.JOB.gz" || exit 1;
fi
## Work out name of alignment model. ##
if [ -z "$alignment_model" ]; then
if [ -f "$srcdir/final.alimdl" ]; then alignment_model=$srcdir/final.alimdl;
else alignment_model=$srcdir/final.mdl; fi
fi
[ ! -f "$alignment_model" ] && echo "$0: no alignment model $alignment_model " && exit 1;
# Generate state-level lattice which we can rescore. This is done with the alignment
# model and no speaker-vectors.
if [ $stage -le 2 ]; then
if [ -f "$graphdir/num_pdfs" ]; then
[ "`cat $graphdir/num_pdfs`" -eq `am-info --print-args=false $alignment_model | grep pdfs | awk '{print $NF}'` ] || \
{ echo "Mismatch in number of pdfs with $alignment_model"; exit 1; }
fi
$cmd --num-threads $num_threads JOB=1:$nj $dir/log/decode_pass1.JOB.log \
sgmm2-latgen-faster$thread_string --max-active=$max_active --beam=$beam --lattice-beam=$lattice_beam \
--acoustic-scale=$acwt --determinize-lattice=false --allow-partial=true \
--word-symbol-table=$graphdir/words.txt --max-mem=$max_mem "$gselect_opt_1stpass" $alignment_model \
$graphdir/HCLG.fst "$feats" "ark:|gzip -c > $dir/pre_lat.JOB.gz" || exit 1;
fi
# Estimate speaker vectors (1st pass). Prune before determinizing
# because determinization can take a while on un-pruned lattices.
# Note: the sgmm2-post-to-gpost stage is necessary because we have
# a separate alignment-model and final model, otherwise we'd skip it
# and use sgmm2-est-spkvecs.
if [ $stage -le 3 ]; then
$cmd JOB=1:$nj $dir/log/vecs_pass1.JOB.log \
gunzip -c $dir/pre_lat.JOB.gz \| \
lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \
lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \
lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \
weight-silence-post 0.0 $silphonelist $alignment_model ark:- ark:- \| \
sgmm2-post-to-gpost "$gselect_opt" $alignment_model "$feats" ark:- ark:- \| \
sgmm2-est-spkvecs-gpost --spk2utt=ark:$sdata/JOB/spk2utt \
$srcdir/final.mdl "$feats" ark,s,cs:- "ark:$dir/pre_vecs.JOB" || exit 1;
fi
# Estimate speaker vectors (2nd pass). Since we already have spk vectors,
# at this point we need to rescore the lattice to get the correct posteriors.
if [ $stage -le 4 ]; then
$cmd JOB=1:$nj $dir/log/vecs_pass2.JOB.log \
gunzip -c $dir/pre_lat.JOB.gz \| \
sgmm2-rescore-lattice --speedup=true --spk-vecs=ark:$dir/pre_vecs.JOB \
--utt2spk=ark:$sdata/JOB/utt2spk \
"$gselect_opt" $srcdir/final.mdl ark:- "$feats" ark:- \| \
lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \
lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \
lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \
weight-silence-post 0.0 $silphonelist $srcdir/final.mdl ark:- ark:- \| \
sgmm2-est-spkvecs --spk2utt=ark:$sdata/JOB/spk2utt "$gselect_opt" --spk-vecs=ark:$dir/pre_vecs.JOB \
$srcdir/final.mdl "$feats" ark,s,cs:- "ark:$dir/vecs.JOB" || exit 1;
fi
rm $dir/pre_vecs.*
if $use_fmllr; then
# Estimate fMLLR transforms (note: these may be on top of any
# fMLLR transforms estimated with the baseline GMM system.
if [ $stage -le 5 ]; then # compute fMLLR transforms.
echo "$0: computing fMLLR transforms."
if [ ! -f $srcdir/final.fmllr_mdl ] || [ $srcdir/final.fmllr_mdl -ot $srcdir/final.mdl ]; then
echo "$0: computing pre-transform for fMLLR computation."
sgmm2-comp-prexform $srcdir/final.mdl $srcdir/final.occs $srcdir/final.fmllr_mdl || exit 1;
fi
$cmd JOB=1:$nj $dir/log/fmllr.JOB.log \
gunzip -c $dir/pre_lat.JOB.gz \| \
sgmm2-rescore-lattice --speedup=true --spk-vecs=ark:$dir/vecs.JOB \
--utt2spk=ark:$sdata/JOB/utt2spk \
"$gselect_opt" $srcdir/final.mdl ark:- "$feats" ark:- \| \
lattice-prune --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \
lattice-determinize-pruned --acoustic-scale=$acwt --beam=$vecs_beam ark:- ark:- \| \
lattice-to-post --acoustic-scale=$acwt ark:- ark:- \| \
weight-silence-post 0.0 $silphonelist $srcdir/final.mdl ark:- ark:- \| \
sgmm2-est-fmllr --spk2utt=ark:$sdata/JOB/spk2utt "$gselect_opt" --spk-vecs=ark:$dir/vecs.JOB \
--fmllr-iters=$fmllr_iters --fmllr-min-count=$fmllr_min_count \
$srcdir/final.fmllr_mdl "$feats" ark,s,cs:- "ark:$dir/trans.JOB" || exit 1;
fi
feats="$feats transform-feats --utt2spk=ark:$sdata/JOB/utt2spk ark,s,cs:$dir/trans.JOB ark:- ark:- |"
fi
# Now rescore the state-level lattices with the adapted features and the
# corresponding model. Prune and determinize the lattices to limit
# their size.
if [ $stage -le 6 ]; then
$cmd --num-threads $num_threads JOB=1:$nj $dir/log/rescore.JOB.log \
sgmm2-rescore-lattice "$gselect_opt" --utt2spk=ark:$sdata/JOB/utt2spk --spk-vecs=ark:$dir/vecs.JOB \
$srcdir/final.mdl "ark:gunzip -c $dir/pre_lat.JOB.gz|" "$feats" ark:- \| \
lattice-determinize-pruned$thread_string --acoustic-scale=$acwt --beam=$lattice_beam ark:- \
"ark:|gzip -c > $dir/lat.JOB.gz" || exit 1;
fi
rm $dir/pre_lat.*.gz
if [ $stage -le 7 ]; then
steps/diagnostic/analyze_lats.sh --cmd "$cmd" $graphdir $dir
fi
if [ $stage -le 8 ]; then
if ! $skip_scoring ; then
[ ! -x local/score.sh ] && \
echo "Not scoring because local/score.sh does not exist or not executable." && exit 1;
local/score.sh $scoring_opts --cmd "$cmd" $data $graphdir $dir
fi
fi
exit 0;