chain_dir_info.pl
10.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
#!/usr/bin/perl -w
use Fcntl;
# we may at some point support options.
$debug = 0; # we set it to 1 for debugging the script itself.
if ($ARGV[0] eq "--debug") {
$debug = 1;
shift @ARGV;
}
if (@ARGV == 0) {
print STDERR "Usage: steps/info/nnet3_dir_info.pl [--debug] <nnet3-dir1> [<nnet3-dir2> ... ]\n" .
"e.g: steps/info/nnet3_dir_info.pl exp/nnet3/tdnn_sp\n" .
"This script extracts some important information from the logs\n" .
"and displays it on a single (rather long) line.\n" .
"The --debug option is just to debug the script itself.\n" .
"This program exits with status 0 if it seems like the arguments\n" .
"really were of the expected directory type, and 1 otherwise.\n";
exit(1);
}
if (@ARGV > 1) {
# repeatedly invoke this program with each of the remaining args.
$exit_status = 0;
if ($debug) { $debug_opt = "--debug " } else { $debug_opt = ""; }
foreach $dir (@ARGV) {
if (system("$0 $debug_opt$dir") != 0) {
$exit_status = 1;
}
}
exit($exit_status);
}
$nnet_dir = shift @ARGV;
sub list_all_log_files {
my @ans = ();
my $dh;
if (!opendir($dh, "$nnet_dir/log")) { return (); }
@ans = readdir $dh;
closedir $dh;
return @ans;
}
# returns 1 if the diagnostics are finished on this iter, else 0.
sub diagnostics_are_finished_on_iter {
my $ans = 1;
my $iter = shift @_;
if (!open(F, "<$nnet_dir/log/compute_prob_train.$iter.log")) {
return 0;
}
$found_loglike = 0;
while (<F>) {
if (m/Overall log-probability/) { $found_loglike = 1; }
}
if (!$found_loglike) { $ans = 0; }
close(F);
if (!open(F, "<$nnet_dir/log/compute_prob_valid.$iter.log")) {
return 0;
}
$found_loglike = 0;
while (<F>) {
if (m/Overall log-probability/) { $found_loglike = 1; }
}
if (!$found_loglike) { $ans = 0; }
close(F);
return $ans;
}
# get the number of iterations.
# note: the iterations go from 0 to num-iters-1.
# if num_iters = 0 this program will just exit with status 1.
# we may return a number slightly less than the number of iterations
# in order to ensure that the compute_prob_train and compute_prob_valid
# processes have finished.
sub get_num_iters {
my $iter = 0;
while (defined $log_file_hash{"train.$iter.1.log"}) {
$iter++;
}
if ($iter == 0) {
die "$nnet_dir does not seem to be an nnet3 neural net training directory.";
}
my $last_iter = $iter - 1;
# find an iteration where the diagnostic jobs compute_prob_{train,valid}.$last_iter.log are done.
for (my $chosen_last_iter = $last_iter;
$chosen_last_iter >= $last_iter - 6 && $chosen_last_iter >= 0;
$chosen_last_iter--) {
if (! diagnostics_are_finished_on_iter($chosen_last_iter)) {
if ($debug) {
print STDERR "nnet3_dir_info.pl: diagnostics not finished running on iteration $chosen_last_iter\n";
}
} else {
return $chosen_last_iter + 1;
}
}
# OK, something's not right, just return the original iteration.
return $iter;
}
sub get_num_jobs_initial {
my $num_jobs = 1;
while (defined $log_file_hash{"train.0.$num_jobs.log"}) {
$num_jobs++;
}
$num_jobs--;
if ($num_jobs == 0) {
die "$nnet_dir does not seem to be an nnet3 neural net training directory.";
}
return $num_jobs;
}
sub get_num_jobs_final { # expects $num_iters to exist as a global variable.
my $final_iter = $num_iters - 1;
my $num_jobs = 1;
while (defined $log_file_hash{"train.$final_iter.$num_jobs.log"}) {
$num_jobs++;
}
$num_jobs--;
if ($num_jobs == 0) {
die "$nnet_dir does not seem to be an nnet3 neural net training directory.";
}
return $num_jobs;
}
sub get_combine_info {
# returns a string with info about the combination stage, or the empty
# string if there wasn't one.
if (defined $log_file_hash{"combine.log"} &&
open(F, "<$nnet_dir/log/combine.log")) {
while (<F>) {
if (m/Combining nnets, objective function changed from (\S+) to (\S+)/) {
close(F);
return sprintf(" combine=%.3f->%.3f", $1, $2);
} elsif (m/Combining (\S+) nnets, objective function changed from (\S+) to (\S+)/) {
close(F);
return sprintf(" combine=%.3f->%.3f (over %d)", $2, $3, $1);
}
}
}
return "";
}
sub format_float_as_string {
my $float = shift @_;
if (abs($float) >= 1.0) {
return sprintf("%.2f", $float);
} else {
return sprintf("%.3f", $float);
}
}
# this is used in get_loglike_and_accuracy to format
# strings like ' loglike[32,48,final],train/valid=(-2.43,-2.32,-2.21/-2.84,-2.71,-2.68)'.
sub get_printed_string {
# $name might be 'loglike', for example.
my ($name, $iters_array_ref, $train_hash_ref, $valid_hash_ref) = @_;
my @iters_array = @$iters_array_ref;
my %train_hash = %$train_hash_ref; # hash from iter-string to value.
my %valid_hash = %$valid_hash_ref; # hash from iter-string to value.
my @iters_to_print = ();
my @train_values_to_print = ();
my @valid_values_to_print = ();
foreach my $iter (@iters_array) {
if (defined($train_hash{$iter}) && defined($valid_hash{$iter})) {
push @iters_to_print, $iter;
push @train_values_to_print, format_float_as_string($train_hash{$iter});
push @valid_values_to_print, format_float_as_string($valid_hash{$iter});
}
}
if (@iters_to_print == 0) { return ""; }
my $joined_iters = join(",", @iters_to_print);
my $joined_train_values = join(",", @train_values_to_print);
my $joined_valid_values = join(",", @valid_values_to_print);
return " ${name}:train/valid[$joined_iters]=($joined_train_values/$joined_valid_values)";
}
# invoke this as get_objf_iter($iter1, $iter2,..) where $iterN is the string-valued
# iteration, e.g. "92", or "final", or "combined", such that we expect
# $nnet_dir/log/compute_prob_{train,valid}.$iterN.log to exist.
sub get_logprob_and_accuracy_info {
my @iters_array = @_;
my %iter_to_train_logprob = ();
my %iter_to_train_penalty = ();
my %iter_to_train_xent = ();
my %iter_to_valid_logprob = ();
my %iter_to_valid_penalty = ();
my %iter_to_valid_xent = ();
foreach my $iter (@iters_array) {
if (defined $log_file_hash{"compute_prob_train.$iter.log"} &&
defined $log_file_hash{"compute_prob_valid.$iter.log"} &&
open(F, "<$nnet_dir/log/compute_prob_train.$iter.log") &&
open(G, "<$nnet_dir/log/compute_prob_valid.$iter.log")) {
while (<F>) {
if (m/Overall log-probability for 'output' is (\S+) \+ (\S+)/) {
$iter_to_train_logprob{$iter} = $1;
$iter_to_train_penalty{$iter} = $2;
} elsif (m/Overall log-probability for 'output' is (\S+)/) {
$iter_to_train_logprob{$iter} = $1;
$iter_to_train_penalty{$iter} = 0.0;
} elsif (m/Overall log-probability for 'output-xent' is (\S+) per frame/) {
$iter_to_train_xent{$iter} = $1;
}
}
close(F);
while (<G>) {
if (m/Overall log-probability for 'output' is (\S+) \+ (\S+)/) {
$iter_to_valid_logprob{$iter} = $1;
$iter_to_valid_penalty{$iter} = $2;
} elsif (m/Overall log-probability for 'output' is (\S+)/) {
$iter_to_valid_logprob{$iter} = $1;
$iter_to_valid_penalty{$iter} = 0.0;
} elsif (m/Overall log-probability for 'output-xent' is (\S+) per frame/) {
$iter_to_valid_xent{$iter} = $1;
}
}
close(G);
}
}
$ans = "";
$ans .= get_printed_string("xent", \@iters_array, \%iter_to_train_xent,
\%iter_to_valid_xent);
$ans .= get_printed_string("logprob", \@iters_array, \%iter_to_train_logprob,
\%iter_to_valid_logprob);
# we don't do anything with the l2 penalties.
return $ans;
}
# invoke this as get_progress_info($iter), e.g. set $iter to the last
# iteration number.
sub get_progress_info {
my $iter = shift @_;
if (!defined $log_file_hash{"progress.$iter.log"} ||
!open(F, "<$nnet_dir/log/progress.$iter.log")) {
return "";
}
my $num_parameters = "0";
my $output_dim = 0;
my $input_dim = 0;
my $ivector_dim = 0;
my $max_clipped_proportion = 0.0;
while (<F>) {
if (m/clipped-proportion=([^,]+)/ && $1 > $max_clipped_proportion) {
$max_clipped_proportion = $1;
}
if (m/^num-parameters: (\S+)/) {
$num_parameters = sprintf("%.1fM", $1 / 1000000.0);
}
if (m/^output-node.* name=output .*dim=(\S+)/) {
$output_dim = $1;
}
if (m/^input-node.* name=input .*dim=(\S+)/) {
$input_dim = $1;
}
if (m/^input-node.* name=ivector .*dim=(\S+)/) {
$ivector_dim = $1;
}
}
close(F);
$ans = "";
if ($num_parameters ne "0") { $ans .= " num-params=$num_parameters"; }
if ($max_clipped_proportion > 0.1) {
if ($max_clipped_proportion > 0.3) {
$ans .= " **max-clipped-proportion=$max_clipped_proportion**"; # for emphasis; this generally isn't good.
} else {
$ans .= " max-clipped-proportion=$max_clipped_proportion";
}
}
if ($output_dim > 0 && $input_dim > 0 && $ivector_dim > 0) {
$ans .= " dim=$input_dim+$ivector_dim->$output_dim";
} elsif ($output_dim > 0 && $input_dim > 0) {
$ans .= " dim=$input_dim->$output_dim";
} elsif ($output_dim > 0) {
$ans .= " output-dim=$output_dim";
}
return $ans;
}
# return 1 if we seem to have finished training, else 0.
sub finished_training {
return defined $log_file_hash{"compute_prob_train.final.log"} ||
defined $log_file_hash{"compute_prob_train.combined.log"};
}
@log_files = list_all_log_files();
if (@log_files == 0) { exit(1); }
$log_file_hash = ();
foreach $f (@log_files) { $log_file_hash{$f} = 1; }
$num_iters = get_num_iters();
$num_jobs_initial = get_num_jobs_initial();
$num_jobs_final = get_num_jobs_final();
$last_iter = $num_iters - 1;
$two_thirds_iter = int($last_iter * 0.666);
$output_string = "$nnet_dir: num-iters=$num_iters";
$output_string .= " nj=$num_jobs_initial..$num_jobs_final";
$output_string .= get_progress_info("$last_iter");
$output_string .= get_combine_info();
# note: IIRC some of the scripts use the name 'combined' for the model after
# combination, and some 'final', so we try both; only one of these will
# actually produce any output.
@iters_array = ("$two_thirds_iter", "$last_iter", "final", "combined");
$output_string .= get_logprob_and_accuracy_info(@iters_array);
print "$output_string\n";
exit(0);